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Abstract
A duality formula, of the Hardy and Littlewood type for multidimensional
Gaussian sums, is proved in order to estimate the asymptotic long-time
behaviour of the distribution of the Birkhoff sums Sn of a sequence generated
by a skew product dynamical system on the T2 torus, with zero Lyapounov
exponents. The sequence, taking the values ±1, is a pairwise independent (but
not independent otherwise) ergodic sequence with infinite range dependence.
The model corresponds to the motion of a particle on an infinite cylinder,
hopping backward and forward along its axis, with a transversal acceleration
parameter α. We show that when the parameter α/π is rational then all the
moments of the normalized sums E((Sn/

√
n)k), but the second, are unbounded

with respect to n, while for irrational α/π , with bounded continuous fraction
representation, all these moments are finite and bounded with respect to n.

PACS numbers: 05.40.−a, 05.45.−a

1. Introduction

Diffusion processes are the most important transport processes to be modelled in the frame
of dynamical systems. For a particle having deterministic ‘chaotic’ motion, diffusion appears
in the long-time limit of the displacement governed by the dynamics under the invariant
probability measure. The extension of the central limit theorem to deterministic dynamical
systems is well established for many strongly chaotic systems. In these systems diffusion is
related to strong mixing properties of the motion of the particles. However, this condition is
sufficient, but not necessary.
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A stationary bounded sequence of identically distributed random variables X0, X1, . . . ,

with zero mean value is ergodic if

1

n

n−1∑
i=0

Xi �−→
n→∞ E(X0) = 0. (1.1)

It fulfils the central limit theorem if there exists a positive sequence fn such that 1
fn

∑n−1
i=0 Xi

converges in law to a normal centred distribution with variance 1. The validity of the
central limit theorem goes beyond the case of independent (Bernoulli) sequences Xi . Recently
this problem has been cast in a more general setting of ergodic dynamical systems.

Let T be a measurable transformation on a space X , equipped with a probability measure
µ on a σ -algebra F of measurable sets. The measure µ is supposed to be T-invariant: for all
A of F one has µ(T −1A) = µ(A). The system is also assumed to be ergodic:

∀f ∈ L1(X ); 1

n

n−1∑
i=0

f (T nX) �−→
n→∞

∫
X

f (x) dµ(x) = E(f ) (1.2)

almost everywhere. The sum

Snf (X) =
n−1∑
i=0

f (T nX)

is called a Birkhoff sum. A real square-integrable function f , with zero mean value, is said to
satisfy the central limit theorem if

lim
n→∞ µ


X :

1√〈
S2

n

〉 n−1∑
i=0

f (T nX) ∈ I


 = 1√

2π

∫
I

exp

(
−x2

2

)
dx (1.3)

In other words, the sum 1√
(〈Snf 〉)2

∑n−1
i=0 f ◦ T n converges in law to a Gaussian variable of

zero mean value and variance 1. A generalization of the central limit theorem has been
established for a class of regular functions for K-systems [Go], and for hyperbolic dynamical
systems the auto-correlations of which decrease exponentially (see a review in [Li]). One of
the most remarkable results of the theory of chaotic dynamical systems was the convergence
of normalized Birkhoff sums of observables to a diffusion process. In the Lorentz gas,
Bunimovich, Chernov, Sinai [BCS], [BS] and Young [CYo] have proved such a behaviour.
They found a class of functions f for which the rescaled ergodic sums converge to the Wiener
process, i.e.

√
τ

[t/τ ]∑
n=0

f ◦ T n →
τ→0

Yt (1.4)

where t ∈ [0, 1] and Yt is a Brownian motion (other information can be found in [Bi]). In non-
integrable area preserving maps numerical results on diffusion have been obtained by many
authors (see, for instance, references in [Za], [MMP]). However to our knowledge, in the
Hamiltonian dynamical systems no rigorous proofs have been given. In [Za], there are several
numerical evidences of the existence of anomalous transport in Hamiltonian non integrable
systems on account of the existence of islands into islands in the phase space of the systems
due to the abundance of some stable periodic behaviours generating Levy flights. One of the
main motivations of our work is to investigate diffusive behaviour in simple ergodic area-
preserving mappings with weakly chaotic properties (i.e. randomness with zero Lyapounov
exponents [CH3]). In such systems, the problem is to find a class of functions f for which
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the rescaled ergodic sums converge to the Wiener process. A first step towards such a result
is to estimate the asymptotic behaviour of the Birkhoff sums. In this work we consider this
problem for completely non-hyperbolic systems having nevertheless a family of observables
for which the two-times auto-correlations are zero. Swante Janson [J] has studied examples of
nonergodic stationary sequences with zero mean value and variance σ , such that the sequence
Sn = ∑n−1

i=0 Xi converges in law, without normalization, which implies a breaking of the
central limit theorem.

We shall consider an ergodic sequence of pairwise independent variables, each of them
taking values in {−1, 1} and having variance σ 2 = 1. They are derived from a dynamical
system on the torus T2, called the Anzaı̈ skew product and defined by

T (x, y) ≡ (x + α, y + x) mod 2π. (1.5)

When α/π is irrational, Furstenberg (see references in [CFS]) has shown that this
transformation has a unique invariant measure, which is thus ergodic and is in fact the
normalized Lebesgue measure dx dy

(2π)2 . In a previous work Courbage and Hamdan [CH1, CH2]

have determined partitions {A,AC}, which are pairwise independent: µ(A∩T −nA) = µ(A)2.
It is equivalent to say that for the function f = IA − µ(A) the family of functions f ◦ T n

are pairwise independent random variables. However, this does not imply at all that these
variables are jointly independent. Actually, the process has infinite memory because its metric
entropy is zero; moreover, there is only linear divergence of trajectories. It is to be noted
that on account of the pairwise independence, it can be immediately seen that the ‘diffusion
coefficient’ σ defined by

1

n

∫
I

(
n−1∑
i=0

f (T nx)

)2

dx �−→
n→∞ σ 2

is finite. However, the existence of the diffusion coefficient is not sufficient to imply asymptotic
normal distribution.

Thus it would be interesting to see whether the central limit theorem holds here or not. We
shall see that the result depends essentially on the continued fraction representation of α. In
this work, A will be limited to the subset T×[0, π ], Xi = f ◦T i and the moments E

((
S

q
n

))
will

be asymptotically estimated. It is however difficult to reconstruct the characteristic function
�n(t) of Sn√

n
. For odd q,E

(
S

q
n

) = 0. For even q several situations can occur. We shall show
that

(a) if α/π is an irrational number with a bounded continued fraction representation, then
E
((

S
2q
n

) = O(nq). Consequently
∣∣E(( Sn√

n

)2q)∣∣ � Aq , where Aq is a constant. The
convergence of the characteristic function depends on the Aq .

(b) If α/π is an irrational but not of the previous type, then there is no fn such that
E
((

Sn

fn

)2k) = O(1), different from zero for all k � 0.

It is to be noted that our mapping gives interesting examples where the existence of the
diffusion coefficient σ 2 = limn→∞ E

(
S2

n

)/
n = 1 is not sufficient to imply the convergence to

the normal distribution.
So it may be suggestive to start out with a concrete picture of particle dynamics. The

dynamical system (1.5) corresponds to the motion of a rotator kicked at a regular time interval
by a force modulated so that the angular velocity remains bounded. Let θ(t) and θ̇ (t) be the
angle and the angular velocity of the rotator, where θ̇ (t) ∈ [0, 2π [. Then, at time t + 1, the
state of the rotator is given by

θ(t + 1) ≡ θ(t) + θ̇ (t) mod (2π)

θ̇(t + 1) ≡ θ̇ (t) + α mod (2π)
(1.6)
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Figure 1. Trajectory of the particle in the plane (q1, q2).

and we have at time t:

θ(t) ≡ θ(0) + t θ̇ (0) +
t (t − 1)α

2
mod (2π). (1.7)

An idea of the randomness of this motion can be seen by using a partition {A,AC} of the torus
into two regions: A = {θ ∈ [0, π [} and AC = {θ ∈ [π, 2π [}. It can be seen that

µ(Ai ∩ T −nAj ) = µ(Ai)µ(Aj )

for any n �= 0, where Ai is either A or Ac [CH1]. This partition is far from being a Bernoulli
one since the entropy of the system is zero. We call such partitions pairwise independent.
In [CH3], it is shown that such sequences are unpredictable in the sense of the Wiener least
squares criterion. It is natural to study the distributions of sums of such sequences, which
represent a particle displacement induced by the dynamical system of equation (1.5) as follows.

A particle moves on an infinite plane among periodically distributed obstacles with spatial
period equal to 1 along both (q1, q2)-directions. In the q1-direction, the motion of the particle
is uniformly accelerated at each regular time interval by an amount α and has uniform free
motion along the q2-direction. That is, define the velocity p1(n) = q1(n + 1) − q1(n), then
the equations of the projection of the motion in the q1-direction are

q1(n) = q1(n − 1) + p1(n − 1) (1.8)

p1(n) = p1(n − 1) + α. (1.9)

It is the result of the discrete time action of the mapping: T : (p1, q1) → T (p1, q1) given by

T (p1, q1) = (p1 + α, q1 + p1). (1.10)

Thus, we obtain

q1(n) = q1(0) + np1(0) + n(n − 1)α/2. (1.11)

The particle is moreover submitted at the beginning of each time interval to a field changing
the direction of the motion up and down along the q2-direction in terms of its position
along the q1-direction in the following way (see figure 1): the velocity direction of the
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particle p2 at time t = n is given by χ(q1(n)) where χ(x) is a periodic discontinuous
function defined by

χ(x) =
{−1 if x ∈]0, 1/2]

1 if x ∈]1/2, 1].
(1.12)

That is, the direction of the velocity at time t = n is

εn(p1(0), q1(0)) = χ(q1(n)) = χ(q1(0) + np1(0) + n(n − 1)α/2) (1.13)

and the value of the variable q2 at time t = n + 1 is

q2(n + 1) = q2(n) + χ(q1(n)) =
n∑
1

εi(p1(0), q1(0)) (1.14)

Let us denote by Sk the position of the particle along the q2-direction at t = k. The
equation for such a motion is expressed by the following recursion relation:

Sn+1 = Sn + χ(q1(n)) S0 = 0. (1.15)

In terms of the variables (x, y) ∈ T2 the distance travelled by the particle along the
vertical direction after n steps is

Sn(x, y;α) =
n−1∑
k=0

χ(y(k)) =
n−1∑
k=0

χ

(
y + kx +

k(k − 1)

2
α

)
. (1.16)

The problem is to study the limiting distribution of such a random walk.
In the following sections, the proof will be given in steps with an increasing order of

complexity, which turns out to be related to number theoretical questions. The main objective
is to obtain the asymptotic behaviour of the expectation values of S

q
n (α) for n −→ ∞. In

the course of this study, we encounter the so-called multidimensional Gaussian sums which
are a particular case of the Weyl sums [K]. They are essentially sums of the form used in
the definition of theta functions, except that the summation is finite. The Gaussian sums
fulfil an exact duality formula, known as Landsberg–Schaar formula [L], which is a variant
of the famous Jacobi identity for theta functions. Except for the rational assumptions in the
application of the Schaar formula, some works had been done to estimate the growth rate of the
one-dimensional Gaussian sums by Hardy and Littlewood in [HL]. To this end they have first
established a duality formula and then used the theory of continuous fraction decomposition
(here we use tools and notation from [VdP] and [R]). We shall treat respectively in
sections 3, 4 and 5 Gaussian sums in one, two and d dimensions, the central point in each part
is concentrated on the proof of a duality formula for these sums.

The Gaussian sums have been more recently studied from a geometrical point of view.
The results of [HL] on polynomials associated with modular functions have been applied in
[DM] and [Z]. Interestingly one may derive this identity from a simple quantum mechanical
system having the torus as phase space [AR]. But Gaussian sums are found also in other fields
such as the problem of fractional wave packet revival [SLB].

2. Preliminary considerations and the case of α rational

Before going into the crux of the subject, let us introduce some technical steps. The important
quantity to study here is the qth moment defined by

E
(
Sq

n (α)
) =
∫

[0,2π[×[0,2π[

(
Sq

n (x, y;α)
)dx dy

4π2
. (2.1)
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An objectve is to study the convergence of the characteristic function

�n(t) =
∫

[0,2π[×[0,2π[
eit (Sn(x,y;α)/

√
n) dx dy

4π2
=

∞∑
q=0

(it)q

q!
E
(
Sq

n (α)
/√

n
)
. (2.2)

Using the Fourier decomposition of the function χ ,

χ(y) = 2i

π

∑
p∈Z̃

eiPy

P
(2.3)

where Z̃ is the set of relative odd integers, we have an alternative form of the distance travelled
by the particle

Sn(x, y;α) = 2i

π

∑
P∈Z̃

n−1∑
k=0

exp
(
iP
(
y + kx + k(k−1)

2 α
))

P
. (2.4)

Hence with this form one may compute the qth moment. After integration on x and y,
which yields two constraints

q∑
i=1

Pi = 0
q∑

i=1

kiPi = 0, (2.5)

the above expression becomes

E
[
Sq

n (α)
] =
(

2i

π

)q ∑
P1∈Z̃

· · ·
∑
Pq∈Z̃

n−1∑
k1=0

· · ·
n−1∑
kq=0

1

P1 · · · Pq

exp
(
i2πβ

(
P1k

2
1 + · · · + Pqk

2
q

))
(2.6)

where β = α
4π

. We are now in a position to prove

Lemma 2.1. E
[
S

2q+1
n (α)

] = 0

E
[
S2q

n (α)
] = (−1)q

4q

π2q

∑
P1∈Z̃

· · ·
∑

P2q∈Z̃

n−1∑
k1=0

· · ·
n−1∑

k2q=0

δ
(∑2q

i=2 Pi(ki − k1)
)

P1 · · · P2q

× exp iπβ

2q∑
i=2

2q∑
j=2

PiPj∑2q

l=2 Pl

(ki − kj )
2 (2.7)

where δ(·) is the Kronecker function: equal to 1 when the argument is 0 and 0 otherwise.

Proof. (Pi)i=1,...,2q are odd. The condition
∑q

i=1 Pi = 0 can only be satisfied if q is even.
Hence E

[
S

2q+1
n (α)

] = 0. Now from the constraint
∑2q

i=1 Pi = 0, we get P1 = −∑2q

i=2 Pi and

from
∑2q

i=1 kiPi = 0 i.e.
∑2

i=2 qPi(ki − k1) = 0. Thus, working out k1:

k1 =
∑2q

i=2 Piki∑2q

i=2 Pi

(2.8)

with (ki)i=2,...,n−1 ∈ {0, . . . , n − 1}. And we obtain, by substitution

2q∑
i=1

Pik
2
i = 1∑2q

i=2 Pi


1

2

2q∑
i=2

2q∑
j=2

PiPj

(
k2
i + k2

j

)− 2q∑
i=2

2q∑
j=2

PiPjkikj




= 1∑2q

i=2 Pi


1

2

2q∑
i=2

2q∑
j=2

PiPj (ki − kj )
2


 (2.9)

which ends the proof. �
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In particular E
[
S2

n(α)
]

can be exactly and directly computed:

E
[
S2

n(α)
] = 4

π2

∑
P1∈Z̃

∑
P2∈Z̃

n−1∑
k1=0

n−1∑
k2=0

exp
(−i2πβ

(
P1k

2
1 + P2k

2
2

))
P1P2

. (2.10)

But we get from the constraints, P1 = −P2 = P and k1 = k2 = k. One has thus

E
[
S2

n(α)
] = 4

π2

∑
P∈Z̃

1

P 2

n−1∑
k=0

1 (2.11)

From the property of the Riemann zeta-function [MOS], it may be shown that
∑

P∈Z̃ 1/P 2 =
π2/4. Hence

E
[
S2

n(α)
] = n. (2.12)

The fact that odd moments are zero implies that the characteristic function is also even
and consequently the Fourier inverse transformation of the characteristic function, that is the
probability distribution function of the random variable Sn(x, y;α) is also even.

Finally we observe that the series

∑
(P2,...,P2q )∈Z̃

2q−1

1

P2 · · ·P2q(P2 + · · · + P2q)
(2.13)

is absolutely convergent since for all (P2, . . . , P2q) ∈ Z̃
2q−1

, |P2 + · · · + P2q | � 1. Let us
prove it for q = 2. The generalization to an arbitrary q is straightforward. The series may be
split into

∑
(P2,P3,P4)∈Z̃

3

1

|P2P3P4(P2 + P3 + P4)| = 2
∑

(P2,P3,P4)∈Ñ
3

1

|P2P3P4(P2 + P3 + P4)|

+ 6
∑

(P2,P3,P4)∈Ñ
3

1

|P2P3P4(P2 + P3 − P4)| . (2.14)

Let (x, y, z) ∈ [0,∞[3 and 0 < δP < 1 such that

1 � P2 � x < P2 + δP ⇔ x − δP < P2 � x

1 � P3 � y < P3 + δP ⇔ y − δP < P3 � y

1 � P4 � z < P4 + δP ⇔ z − δP < P4 � z.

(2.15)

The first sum on the rhs of the equation (1.16) is bounded

∑
(P2,P3,P4)∈Ñ

3

1

|P2P3P4(P2 + P3 + P4)| � 1

61/3

∑
(P2,P3,P4)∈Ñ

3

1

|P2P3P4(P2P3P4)1/3|

= 1

61/3


∑

(P )∈Ñ

1

P 1+1/3


3

< ∞. (2.16)
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The second sum can be transformed using 0 < (x − δP )(y − δP )(z − δP ) � P2P3P4 � xyz

and x + y − z − 2δP � P2 + P3 − P4 � x + y − z + δP . Hence
1

|P2P3P4(P2 + P3 − P4)| � 1

(x − δP )(y − δP )(z − δP )

× max

(
1

|x + y − z − 2δP | ,
1

|x + y − z + δP |
)

def=FδP (x, y, z). (2.17)

But ∀ δP < 1, ∃ε > 0, such that any hypercube

[(P2, P3, P4), . . . , (P2 + δP, P3 + δP, P4 + δP )]

does not lie in the intersection �ε
def= [0,∞[3∩{|x + y − z| > ε}. Then we have∑

(P2,P3,P4)∈Ñ
3

1

|P2P3P4(P2 + P3 − P4)|

� 1

(δP )3

∑
(P2,P3,P4)∈Ñ

3

∫ P2+δP

P2

∫ P3+δP

P3

∫ P4+δP

P4

FδP (x, y, z)

� 1

(δP )3

∫
[0,∞[3\�ε

FδP (x, y, z). (2.18)

One can easily estimate the left-hand side by realizing that the integration of the integrals∫
[0,∞[3\�ε

dx dy dz

|x + y − z + δP | and
∫

[0,∞[3\�ε

dx dy dz

|x + y − z − 2χP | (2.19)

yields an absolutely convergent result.

2.1. α = 0

We consider the simple case α = 0 and show that the case with rational α can be brought back
to the case α = 0. First consider again

Sn(x, y; 0) = 2

iπ

∑
P∈Z̃

1

P

n−1∑
k=0

eiP(kx+y) (2.20)

The above geometric sum can be re-expressed in terms of u = eix and v = eiy as

Sn(x, y; 0) = 2

iπ

∑
P∈Z̃

1

P
z− n−1

2 P

(
1 − unP

1 − uP

) ∑
ε=±1

εuεP n−1
2 vεP (2.21)

Now, the 2kth moment

E
[
S2k

n (0)
] =
∫

[0,2π[×[0,2π[


 2

iπ

∑
P∈Z̃

1

P

(
n−1∑
k=0

e−iP(kx+y)

)2k

dx dy

4π2
(2.22)

may be computed as complex integrals evaluated on the the product of the circles of unit radius
and centred at 0, i.e. C(0, 1) × C(0, 1). In the domain bounded by these circles, the integrand
is biholomorph and the product of the contours is homotopical to C(0, 1/2)× C(0, 1/2). Thus
(1 − up)−1 can be expanded in power series around 0, with u = eix and v = eiy :

Sn(u, v; 0) = 2i

π

∑
P∈Z̃

u
P
2


∑

η=±1

ηuηn P
2


( ∞∑

m=0

umP

)(∑
ε=±1

ε

P
uε n−1

2 P vεP

)
(2.23)
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or

Sn(u, v; 0) = 2i

π

∑
η=±1
ε=±1

∑
m∈N
P∈Ñ

ηε

P
uP(

ε+η

2 n+m+ 1−ε
2 )vεP . (2.24)

We can now compute E
[
S2

n(0)
]

with the expression

E
[
S2

n(0)
] = − 4

π2

∑
η1,η2=±1
ε1,ε2=±1

∑
m1,m2∈N

P1,P2∈Ñ

η1ε1

P1

η2ε2

P2

∮
dv

2iπ
vε1P1+ε2P2

×
∮

du

2iπ
uP1(

ε1+η1
2 n+m1+ 1−ε1

2 )+P2(
ε2+η2

2 n+m2+ 1−ε2
2 ). (2.25)

The first integral over v yields ε1P1 + ε2P2 = 0, one must have ε1 = −ε2 and P1 = P2 = P .
The exponent of z in the second integral becomes

P1

(
ε1 + η1

2
n + m1 +

1 − ε1

2

)
+ P2

(
ε2 + η2

2
n + m2 +

1 − ε2

2

)

= P
(η1 + η2

2
n + m1 + m2 + 1

)
. (2.26)

The contribution to the complex integration comes only from the vanishing of this quantity.
This leads to the following:

η1 = η2 = −1 (2.27)

m1 + m2 = n − 1 (2.28)

and card {(m1,m2) ∈ N2 such that m1 + m2 = n − 1} = n, thus

E
[
S2

n(0)
] =

∑
ε=±1

∑
p∈Ñ

4n

P 2π2
= 4n

π2

∑
P∈Z̃

1

P 2
= n. (2.29)

This computational method may be extended to higher moments E
[
S2k

n (0)
]
. We see that

using equation (2.25) to power 2k yields

E
[
Sn(0)2k

] = (−1)k
(

4

π2

)k ∑
η1,...,η2k=±1

∑
ε1,...,ε2k=±1

∑
m1,...,m2k∈N

∑
P1,...,P2k∈Ñ

2k∏
i=1

ηiεi

Pi

∮
dv

2iπ
v

(∑2k
i=1 εiPi

) ∮
du

2iπ
u

(∑2k
i=1 Pi

(
mi+

1−εi
2 + ηi +εi

2 n
)
.

(2.30)

We can perform the v-integration and get
2k∑
i=1

εiPi = 0 (2.31)

and the u-integration yields the following proposition:

Proposition 1.

E
[
Sn(0)2k

] = (−1)k
(

4

π2

)k ∑
η1,...,η2k=±1

∑
ε1,...,ε2k=±1

∑
m1,...,m2k∈N

∑
P1,...,P2k∈Ñ

2k∏
i=1

ηiεi

Pi

An[ηi, εi, Pi](2k) (2.32)
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where the coefficients An are defined as

An[ηi, εi, Pi](2k) = card

{
(m1, . . . , m2k) ∈ N2k

∣∣∣∣∣
2k∑
i=1

miP i = −1

2

2k∑
i=1

Pi(1 + nηi)

}
(2.33)

with the constraint
∑2k

i=1 εiP i = 0.

This result is obtained by the residue theorem. It remains to determine the behaviour of
An as n → ∞. We observe that not all the combinations of εi are to be taken into account
since (P1, . . . , Pn) ∈ Ñ

2k
. Thus the choice (ε1, . . . , ε2k) = (1, . . . , 1) is excluded by the

constraint. According to the usual notation, if the (Pi)i=1,...,r do not have common divisors,
we note (P1, . . . , Pr) = 1, then

card

{
(m1, . . . , mr) ∈ Nr

∣∣∣∣∣
r∑

i=1

miP i = n

}
�

n→∞
1

(r − 1)!

nr−1

P1 · · · Pr

(2.34)

Before going on we prove the following lemma:

Lemma 2. Let
∑r

i=1 εiP i = 0 and (P1, . . . , Pr) = 1 is equivalent to (P1, . . . , P̂j , . . . , Pr) =
1 where Pj , is removed.

Proof. It is clear that if (P1, . . . , P̂i , . . . , Pr) = 1 then (P1, Pr) = 1. Actually if (P1, . . . ,

P̂j , . . . , Pr) = 1 then � ∃s ∈ Ñ\{1} such that ∀ i �= j, Pi = spi and thus (P1, . . . , Pq) = 1.
Conversely if (P1, . . . , Pq) = 1, but (P1, . . . , P̂j , . . . , Pr) = s with s ∈ Ñ\{1}, i.e.

∀ i �= j, Pi = spi , then Pj = ∑i �=j εiεjPi = s
(∑

i �=j εiεjpi

)
which contradicts the fact that

(P1, . . . , Pq) = 1. �

Coming back to our estimate of An, put N̄
q = Ñ

q ∩{(P1, . . . , Pq) = 1}. If (P1, . . . , P2k) ∈ N̄
2k

such that
∑2k

i=1 εiPi = 0 then

An[ηi, εi, Pi](2k) ∼
n→∞

(−1)2k−1

(2k − 1)!

1∏2k
i=1 Pi

(
n ·∑2k

i=1 Piηi

2

)2k−1

if
2k∑
i=1

ηiPi < 0

=
{

1 if
∑2k

i=1 ηiPi = 0

0 otherwise
(2.35)

with
∑2k

i=1 εiPi = 0. Now from equation (2.35) the asymptotic behaviour for n → ∞ of the
2kth moment is

E
[
S2k

n (0)
] ∼

n→∞ 2
(−1)k

(2k − 1)!π2k

∑
P∈Ñ

1

P 2k

∑
ηi=±1
εi=±1

∑
Pi∈N̄2k

2k∏
i=1

εiηi

P 2
i

(∑
i=12k

ηiPi

)2k−1

n2k−1 (2.36)

with
∑2k

i=1 εiPi = 0 and
∑2k

i=1 ηiPi > 0. We have already seen that the series

∑
η1,...,η2k=±1
ε1,...,ε2k=±1

∑
P1,...,P2k∈N̄2k∑2k

i=1 εiPi=0

2k∏
i=1

εiηi

P 2
i

(
2k∑
i=0

ηiPi

)2k−1

(2.37)
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is absolutely convergent. Since
∑

P∈Ñ
1

P q −→
q→∞ 1, we have thus the theorem:

Theorem 2.2. ∀k ∈ N, E
[
S2k

n (0)
] ∼

n→∞ Ckn
2k−1 with

C1 = 1

Ck = 2
(−1)k

(2k − 1)!π2k

∑
ηi ,εi=±1
Pi∈Ñ2k

2k∏
i=1

εiηi

P 2
i

(
2k∑
i=1

ηiPi

)2k−1

(2.38)

with
∑2k

i=0 εiPi = 0 and
∑2k

i=0 ηiP i > 0.

2.2. Extension to rational β (α ∈ Q)

To this end, we regroup terms of Sn(x, y;α). ∀α ∈ Q, ∃k0 ∈ N such that ∀k < k0:

k(k − 1)β �≡ 0 mod (1)

k0(k0 − 1)β ≡ 0 mod (1).
(2.39)

We shall set n = qk0 and write Sn(x, y;α) grouping the terms such that

δs(x, y) =
q−1∑
n=0

χ(y + [s + nk0]x + 2s(s − 1)πβ) (2.40)

and

Sn(x, y;α) =
k0−1∑
s=0

δs(x, y) (2.41)

with 0 < s � k0. The sum can be partially performed after inserting the definition of χ :

δs(x, y) = 2

iπ

∑
P∈Z̃

1

P
e−ik0

P(P−1)

2 x

(
eiPqk0x − 1

eiPk0x − 1

)

×
(

exp

(
iP

(
y + x

[
s +

k0(q − 1)

2

]
+ 2s(s − 1)β

))

− exp

(
−iP

(
y + x

[
s +

k0(q − 1)

2

]
+ 2s(s − 1)β

)))
. (2.42)

Call now s ′ = 2s(s − 1), u = eix, v = eiy and t = e2iβ . Then

δs(x, y;α) = δs(u, v; t) = 2

iπ

∑
P∈Z̃

1

P
u−k0

P(P−1)

2

(
1 − zPqk0

1 − zPk0

) ∑
ε=±1

εzεP (s+ q−1
2 k0)vεP tεP s ′

.

(2.43)

We now expand 1
1−uPk0

as in the previous section, and obtain consequently

δs(u, v; t) = 2

iπ

∑
ε,η=±1

∑
P∈Z̃,m∈N

εη

P
vεP tεP s ′

uP(εs+k0
1−ε

2 +mk0+qk0
η+ε

2 ) (2.44)

The expectation value

E(δs1(t) . . . δs2k
(t)) = (−1)q

(
4

π

)q ∑
ηi ,εi=±1

Pi∈Ñ,mi∈N

2k∏
i=1

ηiεi

Pi

t

(∑2k
i=1 εiPi s

′
i

)

×
∮

dv

2iπv
v

(∑2k
i=1 εiPi

) ∮
du

2iπu
u

(∑2k
i=1 Pi

(
εi si+k0

1−εi
2 +mik0+qk0

ηi +εi
2

))
(2.45)
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is not zero if
∑2k

i=1 Pi

(
εisi + k0

1−εi

2 + mik0 + qk0
ηi+εi

2

) = 0 and
∑2k

i=1 εiPi = 0. As before, one

can reduce to the case (P1, . . . , P2k) = 1. The first assertion is true if
∑2k0

i=0 εiPisi is divisible
by k0, with 0 � si < k0. The hypothesis on Pi suggests that there exists a Pi0 not divisible
by k0.

Lemma 3. Let s1, . . . , s2k such that
∑2k0

i=0 εiPisi is divisible by k0 then ∀s ∈ {1, . . . , k0} and
s �= si0, k0 is not a divisor of

∑2k0
i=0 εiPisi .

Proof. Suppose that this assertion is not true: ∃n such that
∑2k0

i=0 εiPisi = nk0 and ∃n′ such
that
∑2k0

i=0 εiPisi = n′k0. Hence εi0Pi0(si0 − s) = (n − n′)k0 but k0 is not a divisor of Pi0 and
|si0 − s| < k0, this is not possible. �

Consequently card{(s1, . . . , s2k) ∈ {1, . . . , k0}2k} such that k0 is not a divisor of
∑2k

i=1 εiPisi

and the value (Pi)i=1,...,2k are mutually prime numbers of values less than k2k−1
0 .

Remark 4. We have

card

[
(m1, . . . , m2k) ∈ N2k

∣∣∣∣∣
2k∑
i=1

Pi

(
εisi + k0

1 − εi

2
+ mik0 + qk0

ηi + εi

2

)
= 0

]

�
q→∞ card

[
(m1, . . . , m2k) ∈ N2k

∣∣∣∣∣
2k∑
i=1

miPi = −q

2

2k∑
i=1

ηiPi

]
(2.46)

with (P1, . . . , P2k) = 1. Since
∑2k

i=1 εiPi = 0 and tP
∑2k

i=1 εiPi s
′
i = tP

∑2k
i=1 εiPi s

2
i /2. Following

the previous procedure we obtain for n = qk0.

E
[
S2k

qk0
(α)
] �

q→∞
2(−1)k

π2k(2k − 1)!
(qk0)

2k−1
∑

ηi ,εi=±1
Pi∈Ñ

2k∏
i=1

ηiεi

P 2
i

(
2k∑
i=1

ηiPi

)2k−1
1

k2k−1
0

×
∑
p∈Ñ

k0∑
si=1

tP
∑2k

i=1 εiPi s
2
i /2

P 2k
(2.47)

with the conditions
∑2k

i=1 εiPi = 0,
∑2k

i=1 εiPisi is divisible by k0 (P1, . . . , P2q) = 1 and∑2k
i=1 ηiPi � 0. As it was mentionned, for all P ∈ Ñ, we have∣∣∣∣∣ 1

k2k−1
0

k0∑
si=1

tP/2
∑2k

i=1 εiPi s
2
i

∣∣∣∣∣ < 1. (2.48)

Note that for α = 0 (k0 = 1) this term is simply 1. Consequently we have the theorem

Theorem 2.3. ∀α ∈ Q,∀k ∈ N∗ E
[
S2k

n

(
πβ

4

)] �
n→∞ Ckn

2k−1 with C1 = 1 and Ck a constante.

This result suggests a unique normalization, for which the characteristic function of
Sn(x, y;α) once normalized will be independent of n, when n → ∞:

φSn
n
(t) �

n→∞

∞∑
k=0

(it)2k

(2k)!
Ck

n2k−1

n2k
= 1. (2.49)

Consequently the probability distribution function F of the normalized random variable limit
S = limn→∞ Sn(x,y;α)

n
, for α ∈ Q, is

F(S) = δ (2.50)

where δ is the Dirac distribution. That follows in fact from the ergodic Birkhoff theorem, but
the speed of the convergence to zero of Sn(x,y;α)

n
is very slow.



Multidimensional Gaussian sums arising from the distribution of Birkhoff sums 11771

3. The case of irrational β in terms of Gaussian sums

In this section we shall proceed with a different type of estimate of E
(
S

2q
n (α)

)
for α ∈ R∗. In

particular, we emphasize the difference between the rational case of section 2 and the irrational
case α ∈ R\Q. For this purpose, we shall establish a generalization of the duality formula for
one-dimensional Gaussian sums, given in the celebrated work of Hardy and Littlewood [HL].
This problem consists in estimating the behaviour of the many variable sums, for large n:

n−1∑
k1=0

. . .

n−1∑
k2q=0

exp


i

α

4

2q∑
i=2

2q∑
j=2

PiPj∑2q

i=2 Pi

(ki − kj )
2


 (3.1)

where Pi ∈ Z̃, i = 2, . . . , 2q, are parameters (see equation (2.7). The above sum bears over
integer in indices of N2q formed by the intersection of the hypercube of total volume n2q and
the hyperplane defined by the equation

2q∑
i=2

Pi(ki − k1) = 0. (3.2)

This condition can be recast as an integral using the formulae∫ 1

0
e2π ixP dx = 1 if P = 0

= 0 if P ∈ N∗. (3.3)

Define now the quantity

ξn[x, β;P2, . . . , P2q ] =
n−1∑
k1=0

· · ·
n−1∑

k2q=0

exp


iπβ

2q∑
i=2

2q∑
j=2

PiPj∑2q

i=2 Pi

(ki − kj )
2




× exp

(
2iπx

2q∑
i=2

Pi(ki − k1)

)
(3.4)

Then, the 2qth (see equation (2.7)) moment may be rewritten as

E

[
S2q

n

(
πβ

4

)]
= (−1)q

(
4

π

)q ∑
Pi∈Z̃

1∏2q

i=2 Pi

(∑2q

i=2 Pi

) ∫ 1

0
ξn[x, β;P2, . . . , P2q ] dx (3.5)

As ξn[x, β;P2, . . . , P2q ] are analogous to 2q variables theta functions [M], we shall

express formula (3.5) in terms of Gaussian sums dσ
[�a,�b]
A�n (�, �θ).

Definition 5. We define the d-dimensional Gaussian sums

dσ
[�a,�b]
A�n (�, �θ) =

∑
�k∈A�n

exp

(
iπt

(
�k − �a

2

)
�

(
�k − �a

2

))
exp

(
2iπt

(
�k − �a

2

)(
�θ −

�b
2

))
(3.6)

where � is a d-square matrix with real coefficients: � ∈ Md(R), �θ ∈ Vectd(R) such that
∀i = 1, . . . , d, the component θi of �θ is restricted to 0 < θi < 1. Here we denote by t �v
the transpose of a vector �v. Moreover �a and �b are elements of Vectd({0, 1}). A�n, with �n =
(n1, . . . , nd), is the hyper-rectangle with integer sites in Nd defined by

Any �k ∈ A�n is such that ∀i = 1, . . . , d, 0 � ki � ni − 1, ki ∈ N.
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With this notation

ξn[x, β;P2, . . . , P2q ] =
n−1∑
k1=0

exp

(
−2iπx

(
2q∑
i=2

Pi

)
k1

)
· 2q−1σ

[�0,�0]
A�n (�, �θ) (3.7)

where

• A�n defined by the (2q − 1)-vector �n: �n = (n − 1, . . . , n − 1)

• the (2q − 1)-square matrix �:

� = β∑
Pi




P2
(∑2q

i=2 Pi − P2
) −P2P3 . . . −P2P2q

−P2P3 P3
(∑2q

i=2 Pi − P3
) ... −P3P2q

...
...

. . .
...

−P2P2q −P3P2q . . . P2q

(∑2q

i=2 Pi − P2q

)




(3.8)

• the (2q − 1)-vector θ :

�θ = x




P2

P3

...

P2q


 ∈ Vect2q−1(R) (3.9)

• �a = �b = �0.

In order to compute the above sum, we shall first establish the duality formula:

Theorem 3.1 (duality formula). If � ∈ Md(]0, 1[)sym,inv (the d-dimensional symmetric and
invertible matrices with values in ]0,1[), �θ ∈ Vectd(]0, 1[), and (�a, �b) ∈ Vectd({0, 1}), then

dσ
[�a,�b]
D (�, �θ) =

(
i√

det �

) d
2

e−iπt �θ�−1 �θ

×

 ∑

0�i1,...,id�d

O(1)i1+···+id · dσ
[�b,�a]
Pi1 ...Pid

(�D)(−�−1,�−1 �θ)


 (3.10)

where D is a domain of Nd and �(D) is the set of integers sites of Nd contained in the image
of D by � and Pi is the projection on {ki = 0}. Moreover we take the convention O(1)0 = 1.

This duality formula will be extended to � ∈ Md(R)sym,inv (d-dimensional real symmetric
and invertible matrices) and later we shall treat the case of singular �, i.e. det(�) = 0.

3.1. Results of Hardy and Littlewood on one-dimensional Gaussian sums

Following [HL], let us introduce

C2
n(x, θ) =

n−1∑
k=0

eiπx(k−1/2)2
cos(2k − 1)πθ

C3
n(x, θ) =

n−1∑
k=0

eiπxk2
cos 2kπθ

C4
n(x, θ) =

n−1∑
k=0

(−1)k eiπxk2
cos 2kπθ.

(3.11)
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Then, the duality formula for the Gaussian sum C3
n(x, θ) (see equation (3.17)) can be obtained

by the application of the residue theorem in the formula [HL]

C3
n(x, θ) =

√
i

x
e−iπ θ2

x C3
nx

(
− 1

x
,
θ

x

)
+ i
∫ ∞

0

e−πx(n2−t2)

sinh πt
Qn(θ, x, t) dt (3.12)

with 0 < x < 1 and 0 < θ < 1. The function Qn(θ, x, t) is given by

Qn(θ, x, n) = cos(2πnθ) cosh(2πθt) sinh((2nx − 2k − 1)πt)

+ i sin(2πnθ) sinh(2πθt) cosh((2nx − 2k − 1)πt). (3.13)

Observe that the integral in this equation may be reduced to integrals of the type∫ ∞

0
eiπx(n2−t2) e2πθt sinh(απt)

sinh(πt)
dt. (3.14)

From the theorem on intermediate values we have ∃T bounded, such that ∀θ ∈]0, 1[, the
previous integral is

O(1) e−πn2x

∫ T (θ)

0
eiπxt2

e2πθt dt (3.15)

where O(1) means a bounded function with respect to θ . This integral depends on θ but
remains bounded. The validity of this theorem is guaranteed since sinh(απt)

sinh(πt)
is a positive

decreasing function of θ on R+. Its value is

O(1)

√
i

x
e−π θ2

x

(
erf

(
T

√
iα − b√

iα

)
− erf

(
b√
iα

))
(3.16)

where the function erf (the error function) is defined as erf(z) �→ ∫ z

0 e−iπv2
dv. This leads to

a more precise form of the result of Hardy and Littelwood. A similar proof can be performed
for C2

n and C4
n . In fact we have obtained the proposition:

Proposition 6. We have the following duality formulae: ∀0 < x < 1 and ∀0 < θ < 1

C2
n(x, θ) =

√
i

x
e−iπ θ2

x

(
C4

nx

(
− 1

x
,
θ

x

)
+ O(1)

)

C3
n(x, θ) =

√
i

x
e−iπ θ2

x

(
C3

nx

(
− 1

x
,
θ

x

)
+ O(1)

)

C4
n(x, θ) =

√
i

x
e−iπ θ2

x

(
C2

nx

(
− 1

x
,
θ

x

)
+ O(1)

)
.

(3.17)

In their work, Hardy and Littlewood have stated that analogous sums with sine instead cosine
also obey duality formulae which can be established in a similar way. However as already
seen, the parity of the cosine function does play an important role. When the cosine is replaced
by the sine, there appears Fresnel functions which need additional treatment. We offer here
an alternative proof. Define

C3
q,q+r (x, θ) =

q+r∑
k=q+1

eiπxk2
cos(2kπθ) = C3

q+r (x, θ) − C3
q (x, θ). (3.18)

Applying the duality formula on C3
q (x, θ) we find

C3
q,q+r (x, θ) =

√
i

x
e−iπ θ2

x

(
C3

nq,n(q+r)

(
− 1

x
,
θ

x

)
+ O(1)

)
. (3.19)
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But we also have

C3
q,q+r (x, θ) =

q+r∑
k=q+1

eiπxk2
cos(2πkθ) =

q+r∑
k=1

eiπx(k+q)2
cos 2π(k + q)θ (3.20)

after the expansion of the cosine, we obtain

C3
q,q+r (x, θ) = e−πxq2

2

r∑
k=1

eiπxk2
(cos 2πθq[cos 2π(xq + θ)k + cos 2π(xq − θ)k

+ i(sin 2π(xq + θ)k + sin 2π(xq + θ)k)] + sin 2πθq[sin 2π(xq + θ)k

− sin 2π(xq − θ)k − i(sin 2π(xq + θ)k + sin 2π(xq + θ)k)]). (3.21)

Assume now x ∈ Q, such that x = a/b, where a and b are prime numbers. We choose
now e1 as a multiple of b and let e(xq) label the integer part of xq:

C3
q,q+r (x, θ) = (−1)qe(xq)

×
[

cos 2πqθ

r−1∑
k=0

eiπxk2
cos 2πθk − sin 2πqθ

r−1∑
k=0

eiπxk2
sin 2πθk

]
. (3.22)

Using the duality formula we obtain

C3
q,q+r (x, θ) = (−1)qe(xq) cos 2πqθ

√
i

x
e−iπ θ2

x

(
C3

xr

(
− 1

x
,
θ

x

)
+ O(1)

)

− (−1)qe(xq) sin 2πqθ

r−1∑
k=0

eiπsk2
sin 2πθk. (3.23)

Moreover we have√
i

x
e−iπ θ2

x

(
C3

xr

(
− 1

x
,
θ

x

)
+ O(1)

)

=
√

i

x
e−iπ θ2

x

e(xr)−1∑
k=0

√
i

x
e−iπ θ2

x (−1)qe(xq) e−iπ (k+e(xq))2

x cos 2π
k + e(xq)

x
θ

×
[

cos 2π
e(xq)

x
θ

e(xr)−1∑
k=0

e−iπ k2

x cos 2π
k

x
θ

− sin 2π
e(xq)

x
θ

e(xr)−1∑
k=0

e−iπ k2

x sin 2π
k

x
θ + O(1)

]
. (3.24)

This leads to the equality

cos 2πθq

(
C3

xr

(−1

x
,
θ

x

)
+ O(1)

)
−
√

x

i
sin 2πqθ

e(xr)−1∑
k=0

eiπ θ2−k2

x sin 2π
k

x
θ

= C3
xr

(−1

x
,
θ

x

)
cos 2π

e(xq)

x
θ − S3

xr

(−1

x
,
θ

x

)
sin 2π

e(xq)

x
θ + O(1) (3.25)

when q is given as a multiple of b, we simply get

S3
r (x, θ) =

√
i

x
e−iπ θ2

x

[
S3

xr

(−1

x
,
θ

x

)
+ O(1)

]
(3.26)
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∀θ such that 2πqθ �= πk or θ �≡ k
2q

mod (1). Let us now call

ζq =
{
θ ∈ ]0, 1[ ∃k ∈ N such that θ ≡ k

2q
mod (1)

}
. (3.27)

But ∀θ, ∃q ′ a multiple of b such that θ �∈ ζq ′ .
Hence, ∀θ ∈ ]0, 1[ and ∀x ∈ Q, we obtain the same duality formula. Finally Sr(x, θ) is

a continuous function and bicontinuous since it is a finite sum of bicontinuous functions. As
Q is dense R,∀x ∈ ]0, 1[, ∃xn ∈ Q\]0, 1[, n ∈ N such that limn→∞ xn = x and by continuity
we obtain the limits

lim
n→∞ S3

r (xn, θ) = S3
r (x, θ)

lim
n→∞ S3

xr

(−1

xn

,
θ

xn

)
= S3

xr

(−1

x
,
θ

x

)
.

(3.28)

Doing the same proof for S2
n(x, θ) and S4

n(x, θ) we get the following duality formulae:

S2
n(x, θ) =

√
i

x
e−iπ θ2

x

(
S4

nx

(
− 1

x
,
θ

x

)
+ O(1)

)

S3
n(x, θ) =

√
i

x
e−iπ θ2

x

(
S3

nx

(
− 1

x
,
θ

x

)
+ O(1)

)

S4
n(x, θ) =

√
i

x
e−iπ θ2

x

(
S2

nx

(
− 1

x
,
θ

x

)
+ O(1)

) (3.29)

These results are used to show that for the following Gaussian sums,

1σ [a,b]
n (x, θ) =

n−1∑
k=0

e−iπx(k−a/2)2
e2iπ(k−a/2)(θ−b/2) (3.30)

with a = 1, 0 and b = 0, 1, we have ∀x ∈ ]0, 1[ and θ ∈ ]0, 1[:

1σ [a,b]
n (x, θ) =

√
i

x
e−iπ θ2

x

(
1σ [a,b]

nx

(
− 1

x
,
θ

x

)
+ O(1)

)
. (3.31)

We summurize these results in the following:

Theorem 3.2. ∀x ∈ ]0, 1[,∀θ ∈ ]0, 1[,∀a, b = 0, 1:

1σ [a,b]
n (x, θ) =

√
i

x
e−iπ θ2

x

(
1σ [b,a]

nx

(
− 1

x
,
θ

x

)
+ O(1)

)

C[a,b]
n (x, θ) =

√
i

x
e−iπ θ2

x

(
C[b,a]

nx

(
− 1

x
,
θ

x

)
+ O(1)

)

S[a,b]
n (x, θ) =

√
i

x
e−iπ θ2

x

(
S[b,a]

nx

(
− 1

x
,
θ

x

)
+ O(1)

)
.

(3.32)

Upon application of the duality ∀x ∈ ]0, 1[,∀θ ∈ ]0, 1[,∀a, b = 0, 1, we have
1σ [a,b]

n (−x, θ) = [1σ [a,b]
n (x, θ)

]∗
=
[√

i

x
e−iπ θ2

x

(
1σ [a,b]

nx

(
− 1

x
,
θ

x

)
+ O(1)

)]∗

= e−i π
4√
x

eiπ θ2

x

[
1σ [b,a]

nx

(
− 1

x
,
θ

x

)
+ O(1)

]∗

= e−i π
4√−x

eiπ θ2

−x

[
1σ

[b,a]
−nx

(
− 1

−x
,

θ

−x

)
+ O(1)

]∗
. (3.33)
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We extend the validity of the duality formula to x ∈ R\N. Using the convention
√−1 = i,

the identity formula can be extended for −1 < x < 1 and x �= 0. All this remains valid for
Cn and Sn, since we have the identity

1σ [a,b]
n (x, θ) = C[a,b]

n (x, θ) + iS[a,b]
n (x, θ) (3.34)

Finally we also have the formula

1σ [a,b]
n (x + 1, θ) = √

i
a1σ [a,b′]

n (x, θ) (3.35)

with b′ ≡ b + a mod (1), it may be used to extend the validity domain of the formula into
x ∈ R\Z. If x ∈ Z, the series reduces to a geometric series. The same results hold for Cn

and Sn.

Remark 7. If x ∈ Q, there exists a discrete duality formula (Shaar’s formula). This relation is
actually the same as our formulae without the term O(1). The formulae are used in successive
iterations until the summations are limited to a small number. The domain of summation is
reduced at each step. However the result depends on its expansion as a continuous fraction
(see [HL]). This last problem is closely related to the Gauss transform T (x) ≡ 1

x
mod (1) for

which there exist infinite generating partitions. So for example if x is irrational, but admits a
decomposition into continuous bounded fractions, we have

1σ [a,b]
n (x, θ) � O(

√
n) (3.36)

a homogenous function in θ . But if x ∈ Q

1σ [a,b]
n (x, θ) � O(n). (3.37)

4. Two-dimensional Gaussians sums

4.1. Two-dimensional Gaussian sums with non-degenerate matrix �

Once this case treated, one can extend the results to Gaussian sums of arbitrary dimensions,
provided some delicate points are worked. Consider the Gaussian sum in two dimensions:

2σ
[0,0]
A�q (�, �θ) =

q1−1∑
k1=0

q2−1∑
k2=0

eiπ(ω1k
2
1 +ω2k

2
2 +2ωk1k2) e2iπ(k1θ1+k2θ2) (4.1)

where �q = (q1, q2) and � ∈ M(]0, 1[)sym with

� =
[
ω1 ω

ω ω2

]
. (4.2)

A�q labels integer sites of rectangles of dimensions q1 × q2. We first assume that
0 < ωq1 + θ1 < 1 and 0 < ωq2 + θ2 < 1. As q1 and q2 are to be large numbers, one
may call these matrices weak coupling matrices. If ω = 0, this Gaussian sum goes back to a
product of one-dimensional Gaussian sums. In general

2σ
[0,0]
A�q (�, �θ) =

q1−1∑
k1=0

eiπ(ω1k
2
1 +2θ1k1)

q2−1∑
k2=0

eiπ(ω2k
2
2 +2ωk1k2+2θ2k2). (4.3)

We shall establish the duality formula successively with respect to (k1, k2). If the duality
transformation is performed on the k2 sum one gets
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2σ
[0,0]
A�q (�, �θ) =

q1−1∑
k1=0

exp
(
iπ
(
w1k

2
1 + 2θ1k1

))
exp

(
−iπ

(ωk1 + θ2)
2

ω2

)

×
√

i

ω2

(
ω2(q2−1)∑

k2=0

exp

(
−iπ

k2
2

ω2

)
exp

(
2iπ

(ωk1 + θ2)
2

ω2

)
+ O(1)

)

=
√

i

ω2
exp

(
−iπ

θ2
2

ω2

)(ω2(q2−1)∑
k2=0

exp

(
−iπ

k2
2

ω2

)
exp

(
2iπ

θ2

ω2
k2

)

× exp

(
2iπ

(
θ1 − θ2

ω

ω2
+

ω

ω2
k2

)
k1

) q1−1∑
k1=0

exp

(
iπ

ω1ω2 − ω2

ω2
k2

1

))

+O(1)

√
i

ω2
exp

(
−iπ

θ2
2

ω2

) q1−1∑
k1=0

exp

(
iπ

ω1ω2 − ω2

ω2
k2

1

)

× exp

(
2iπ

(
θ1 − ω

ω2
θ2

)
k1

)
(4.4)

when � is an invertible matrix (det(�) �= 0), we can further apply the duality transformation
on the k1 sum and obtain

2σ
[0,0]
A�q (�, �θ) =

√
i

ω2
exp

(
−iπ

θ2
2

ω2

)(ω2q2−1∑
k2=0

exp

(
−iπ

(
k2

2

ω2
+ 2

θ2
2

ω2
k2

))

× exp

(
−iπ

ω2θ2 − ωθ2 + ωk2

ω2(ω1ω2 − ω2)
k1

))

×




(ω1− ω2

ω2
)q1−1∑

k1=0

exp

(
−iπ

ω2

ω1ω2 − ω2
k2

1

)
exp

(
2iπ

ω2θ1 − ωθ2 + ωk2

ω2(ω1ω2 − ω2)
k1

)
+O(1)

√
i

ω2
exp

(
−iπ

θ2
2

ω2

)
exp

(
−iπ

ω2

ω1ω2 − ω2

(
θ2 − ω

ω2
θ1

))

×




(ω1− ω2

ω2
)q2−1∑

k2=0

exp

(
−iπ

ω2

ω1ω2 − ω2
k2

1

)
exp

(
2iπ

ω2θ2 − ωθ2

ω2(ω1ω2 − ω2)
k1

)
+ O(1)


.

(4.5)

Now taking into account the assumptions on ω, the summation over the variable k1 from
0 to
(
ω1 − ω2

ω2

)
q1 − 1 is the same as the summation over k1 = 0, . . . , ω1q1 − 1. This fact also

occurs for the k2 such that the above expression becomes

2σ
[0,0]
A(q1 ,q2)

(�, �θ) = i e−iπt �θ�−1 �θ
√

det(�)

[
2σ

[0,0]
A(ω1q1 ,ω2q2)

(−�−1,�−1 �θ)

+O(1)
(

2σ
[0,0]
P1[A(ω1q1 ,ω2q2)]

(−�−1,�−1 �θ)

+ 2σ
[0,0]
P2[A(ω1q1 ,ω2q2)]

(−�−1,�−1 �θ) + 1
)]

(4.6)

where P1 (resp. P2) is the projection onto the plane {k1 = 0} (resp. {k2 = 0}). We also note
that the duality transformation essentially replaces sums over k by other sums over k with an
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error of order 1. For example
∑

k1,k2
is replaced by

(∑
k1

+ O(1)
) (∑

k2
+ O(1)

) � ∑k1,k2
+

O(1)
∑

k1
+ O(1)

∑
k2

+ O2(1). Moreover, there is a simplification since

2σ
[0,0]
P1[A(ωq1,ω2q2)]

(−�−1,�−1 �θ) =1 σ
[0]
A(ω2q2)

(
− ω1

ω1ω2 − ω2
,
ω1θ2 − ωθ1

ω1ω2 − ω2

)
. (4.7)

For sufficiently small ω, integer sites such that 0 � k1 � ω1q1 and 0 � k2 � ω2q2 are those
with �k = (k1, k2) ∈ �(A�q). Thus

2σ
[0,0]
A�q (�, �θ) = i e−iπt �θ�−1 �θ

√
det(�)

[
2σ

[0,0]
�A�q (−�−1,�−1 �θ) + O(1) · 2σ

[0,0]
P1[�A�q ](−�−1,�−1 �θ)

+ O(1) · 2σ
[0,0]
P2[�A�q ](−�−1,�−1 �θ) + O(1)

]
. (4.8)

Now for �a and �b nonzero (i.e. ai = {0, 1}; bi = {0, 1}, i = 1, 2), we have in a similar manner
the lemma

Lemma 8. ∀� ∈ M2(R)sym an invertible matrix and with ω small enough:

2σ
[�a,�b]
A�q (�, �θ) = i e−iπt �θ�−1 �θ

√
det(�)

[
2σ

[�b,�a]
�A�q (−�−1�−1, �θ) + O(1) · 2σ

[�b,�a]
P1[�A�q ](−�−1�−1, �θ)

+O(1) · 2σ
[�b,�a]
P2[�A�q ](−�−1�−1, �θ) + O(1)

]
(4.9)

where

2σ
[�a,�b]
A�q (�, �θ) =

∑
�k∈A�q

exp

(
iπt

(
�k − �a

2

)
�

(
�k − �a

2

))
exp

(
2π it

(
�θ −

�b
2

)(
�k − �a

2

))
.

4.2. Two-dimensional Gaussian sums with a degenerate matrix �

In the expression of 2σ
[0,0]
A�q (�, �θ) see equation (4.1) we perform the duality transformation on

k2 sums. This operation yields

2σ
[0,0]
A�q (�, �θ)) =

√
i

ω2
exp

(
−iπ

θ2
2

�2

)
exp

(
iπ(q − 1)

(
θ1 − ω

ω2
θ2

))

×
(

ω2q2−1∑
k2=0

exp

(
−iπ

k2
2

ω2

)
exp

(
2iπ

(
θ2

ω2
+

(q − 1)ω

2ω2

)
k2

)

× sin πq1
(
θ1 − ω

ω2
(k2 − 1)

)
sin π

(
θ1 − ω

ω2
(k2 − 1)

) + O(1)
sin πq1

(
θ1 − ω

ω2

)
sin π

(
θ1 − ω

ω2

)
)

. (4.10)

We observe that for � non-invertible, the general form of the sum eiπ quadratic form

eiπ linear form is not preserved under this duality transformation. Moreover the symmetry k1 ↔ k2

seems to be apparently broken since its expression depends on the variable which is to be
transformed first by duality. This type of formula will be used later on, although with an
appropriate form. In the present case, it is sufficient to perform successive dualities uniquely
on the variable k2 until the summation on k2 is equal to O(1). Then perform at last the
geometric summation over k1. We shall now remove the restriction on small ω and consider
the general case. Let us give the following definition:

Definition 9. An invertible symmetric matrix is called non-diagonal integer, when there are
no integer entries outside its diagonal. This set of such matrices is denoted by M∗

Z(R)inv,sym.
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Let

f[�,�θ ](
�k + �n) = eiπt (�k+�n)�(�k+�n) e2iπt (�k+�n)�θ (4.11)

with �θ ′ ≡ �θ + ��n mod 1, we have

f[�,�θ ](
�k + �n) = e2π it �k��nf[�,�θ](

�k)f[�,�θ](�n)

= f[�,�θ ](�n)f[�, �θ ′](
�k). (4.12)

So for θ1 and θ2 given, let (q ′
1, q

′
2) be such that the duality formula is valid, we cut the domain

{0 � k1 < q1, 0 � k2 < q2} into small rectangles of size q ′
1 × q ′

2. Let us consider the set

B(m1,m2) = {(k1, k2) ∈ N2 | m1q
′
1 � k1 < (m1 + 1)q ′

1 and

m2q
′
2 � k2 < (m2 + 1)q ′

2}. (4.13)

Necessarily m1 � e(q1/q
′
1) and m2 � e(q2/q

′
2); here e(q/q ′) represents the integer part of

q/q ′. It is sufficient to verify that the duality formula is proved by shicking together the
B(m1,m2). Call �m = (m1,m2). Then∑

�k∈B( �m)

f[�,�θ](
�k) =

∑
�k∈B(�0)

f[�,�θ ](
�k + �m)] = f[�,�θ ]( �m)

∑
�k∈�B(�0)

f[�,�θ ′′](
�k) (4.14)

with �θ ′′ = �θ + � �m − �N , where �N is a vector with integer coordinates such that ∀i, θ ′′
i = θi +

(� �m)i − Ni ∈]0, 1[. Now we perform the duality transformation

∑
�k∈B( �m)

f[�,�θ ](
�k) = f[�,�θ ]( �m)i

e−iπt �θ ′�−1 �θ ′

det(�)


 ∑

�k∈�B(�0)

f[−�−1,�−1 �θ ′′](
�k)

+O(1)


 ∑

�k∈P1�B(�0)

f[−�−1,�−1 �θ ′′](
�k) +

∑
�k∈P2�B(�0)

f[−�−1,�−1 �θ ′′](
�k) + 1




 (4.15)

with

eiπt �θ ′��θ ′ = eiπt �θ�−1 �θf[−�−1,�−1 �θ ](
�N)f[−�,−�θ ]( �m) (4.16)

since t �N · �m ∈ N. Finally

∑
�k∈B( �m)

f[�,�θ ](
�k) = i

e−iπt �θ�−1 �θ
√

det(�)
f[−�−1,�−1 �θ](

�N)



∑
�k∈

�B(�0)

f[−�−1,�−1 �θ−�−1 �N ](
�k)

+O(1)



∑
�k∈

P∞�B(�′)

f[−�−1,�−1 �θ−�−1 �N](
�k) +

∑
�k∈

P2�B(�0)

f[−�−1,�−1 �θ−�−1 �N ](
�k) + 1






(4.17)
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or alternatively

∑
�k∈B( �m)

f[�,�θ ](
�k) = i

e−iπt �θ��θ

det(�)
f[−�−1,�−1 �θ](

�N)



∑

(�k− �N)∈
�B(�0)

f[−�−1,�−1 �θ](
�N)

+O(1)



∑

(�k− �N)∈
P1�B(�0)

f[−�−1,�−1 �θ (�k) +
∑

(�k− �N)∈
P2�B(�0)

f[−�−1,�−1 �θ](
�k) + 1




 . (4.18)

Here �N is an integer vector such that ∀i = 1, 2, |Ni − (� �m)i | < 1. Thus replacing �N by
� �m we make an error in the double sum

∑
k1,k2

of the order O(1)
∑

k1
and O(1)

∑
k2

and an

error with respect to the
∑

k1
(resp.

∑
k1

) of order O(1). The index (�k − � �m) ∈ �B(�0) is

equivalent to �k ∈ �( �m − B(�0)) or also �k ∈ �B( �m)) by linearity. For the same reasons we
have, for i = 1, 2, (�k − � �m) ∈ P(�B(�0)) is equivalent to �k ∈ P(�B( �m)) and we have

q1−1∑
k1=0

q2−1∑
k2=0

f[�,�θ](
�k) =

e(q1/q
′
1)∑

r=0

e(q2/q
′
2)∑

s=0

∑
�k∈B(r,s)

f[�,�θ ](
�k)i

e−iπt �θ��θ
√

det(�)

e(q1/q
′
1)∑

r=0

e(q2/q
′
2)∑

s=0

=

 ∑

�k∈�B(r,s)

f[−�−1,�−1 �θ](
�k)

+O(1)


 ∑

�k∈P1�B(r,s)

f[−�−1,�−1 �θ](
�k) +

∑
�k∈P2�B(r,s)

f[−�−1,�−1 �θ ](
�k) + 1






= i
e−iπt �θ��θ

det(�)


 ∑

�k∈�A(q1,q2)

f[−�−1,�−1 �θ](
�k)

+O(1)


 ∑

�k∈P1�A(q1,q2)

f[−�−1,�−1 �θ ](
�k) +

∑
�k∈P2�A(q1,q2)

f[−�−1,�−1 �θ ](
�k) + 1




 .

(4.19)

Finally the same calculation shows that for all bounded domains D ∈ N2, we have the theorem

Theorem 4.1 (Duality). Let � ∈ M∗
2 (]0, 1[)inv,D the bounded domain in N2 we have

2σ
[�a,�b]
D (�, �θ) = i

e−iπt �θ��θ

det(�)

[
2σ

[�a,�b]
�D (−�−1,�−1 �θ) + O(1) · 2σ

[�a,�b]
P∞(�D)(−�−1,�−1 �θ)

+O(1) · 2σ
[�a,�b]
P∈(�D)(−�−1,�−1 �θ) + O(1)

]
. (4.20)

This formula can be extended to the set of matrices � ∈ M∗
2 (R)inv. This result is given in

the next section where the general case with d dimensions is treated.
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5. d-dimensional Gaussian sums: generalizations

In this section, proofs or parts of proofs that are similar to those in two dimensions will not be
repeated. Let us consider the case where non-diagonal elements ωij (i �= j) are sufficiently
small for the same vector �θ , and where � is invertible. We shall study the case �a = �b = �0.
The general case can be deduced by analogy. Performing the dual transformation on only one
variable km with 1 � m � d on the sum defining

dσ
[�0,�0]
A�q (�, �θ) =

q1−1∑
k1=0

. . .

qd−1∑
kd=0

exp


iπ


 ∑

1�i�d

ωiik
2
i + 2

∑
1�i<j�d

ωij kikj + 2
∑

1�i�d

kiθi






=
q1−1∑
k1=0

. . .

ωm,mqm−1∑
km=0

. . .

qd−1∑
kd=0

exp


iπ


 i �=m∑

1�i�d

ωiik
2
i

+ 2
i �=m,j �=m∑
1�i<j�d

ωij kikj + 2
i �=m∑

1�i�d

kiθi






×
qm−1∑
km=0

exp


iπ


ωmmk2

m + 2


θm +

∑
1�i�d

ωmiki


 km




 , (5.1)

we get

dσ
[�0,�0]
A�q (�, �θ) =

q1−1∑
k1=0

. . .

qm−1∑
k̂m=0

. . .

qd−1∑
kd=0

exp


iπ


 i �=m∑

1�i�d

ωiik
2
i + 2

i �=m,j �=m∑
1�i<j�d

ωij kikj






× exp


2

i �=m∑
1�i�d

kiθi


√ i

ωmm

∑
ki �=km

exp


− π

ωmm


θm +

∑
1�i�d

ωmiki


2



×

ωmqm−1∑

km=0

exp


iπ


− k2

m

ωmm

+ 2


θm +

∑
1�i�d

ωmiki


 km

ωmm




 + O(1)


 .

(5.2)

Let us define Dm as the dual transformation operator on the index km. We observe that for any
function f

Om(1)f (. . . , km, . . .) = O(1)f (. . . , km = 0, . . .). (5.3)

Thus regrouping terms using the previous remark, we have

dσ
[�a,�b]
A�q (�, �θ) =

√
i

ωmm

exp

(
−iπ

θ2
m

ωmm

) q1−1∑
k1=0

. . .


ωmmqm−1∑

km=0

+Om(1)




· · ·
qd−1∑
kd=0

exp


−iπ


 k2

m

ωmm

−
∑
i �=m

(
ωii − ω2

mi

ωmm

)
k2
i






× exp


iπ

i �=m,j �=m∑
1�i<j�d

(
ωij − ωmiωmj

ωmm

)
kikj


 exp


iπ

i �=m∑
1�i�d

ωmi

ωmm

kikm
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× exp


2iπ

i �=m∑
1�i�d

(
θ1 − ωmi

ωmm

θm

)
ki


 exp


2iπ

i �=m∑
1�i�d

θm

ωmm

km


 . (5.4)

Now this relation may be re-expressed using the dualization with respect to the variables
km,Dm, defined by

Dm


q1−1∑

k1=0

. . .

qd−1∑
kd=0

exp


iπ


 ∑

1�i�d

ωiik
2
i + 2

∑
1�i<j�d

ωij kikj + 2
∑

1�i�d

kiθi








= �′
q1−1∑
k1=0

. . .


ωmmqm−1∑

km=0

+Om(1)


 . . .

qd−1∑
kd=0

exp


iπ

[ ∑
1�i�d

ω′
iik

2
i




× exp


+2

∑
1�i<j�d

ω′
ij kikj + 2

∑
1�i�d

kiθ
′
i

] . (5.5)

Thus under the action of Dm, matrix elements of �, �θ are transformed and a multiplicative
factor is introduced, leading to the following relations:

• ω′
ij = ωij − ωimωjm

ωmm
,∀1 � i � d,∀1 � j � d with i �= m and j �= m

• ω′
mm = − 1

ωmm
,

• θ ′
i = θi − ωim

ωmm
θm,∀1 � i � d, with i �= m

• θ ′
m = θm

ωmm

• �′ =
√

i
ωmm

exp
(−iπ θ2

m

ωmm

)
� with � = 1

and of course we have �′ = Dm(�), �θ ′ = Dm(θ) and �′ = Dm(�). Under the action of
duality on the index km, the matrix � becomes a symmetric matrix. So let us apply this
transformation successively as follows, 1 � m � d,

�

�θ
1


 =


�0

�θ0

�0


 �−→

D1


�1

�θ1

�1


 �−→

D2

. . . �−→
Dm


�m

�θm

�m


 (5.6)

where each bracket represents, with the set [�, �θ,�] the effect of the transformation. Define
now the symmetric matrix Bm taken from � as

Bm =




ω11 . . . ω1m

...
...

ωm1 . . . ωmm


 (5.7)

�m =
√

i
m

√
det Bm

e−iπ · t (θ1,...,θm)B−1
m (θ1,...,θm) (5.8)

with for 1 � i � m and 1 � j � m

(ωm+1)i,j = (−1)i+j

det Bm

det




ω11 . . . ω1,j−1 ω1,j+1 . . . ω1,m

...
...

...
...

ωi−1,1 . . . ωi−1,j−1 ωi−1,j+1 . . . ωi−1,m

ωi+1,1 . . . ωi+1,j−1 ωi+1,j+1 . . . ωi+1,m

...
...

...
...

ωm,1 . . . ωm,j−1 ωm,j+1 . . . ωm,m




(5.9)
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that is essentially the (i, j) cofactor of Bm. In a more compact way we can write

�m+1|(i,j)=1,...,m = −B−1
m (5.10)

for m < i and 1 � j � m

(ωm+1)i,j = 1

det Bm

det




ω11 . . . ω1,j−1 ω1i ω1,j+1 . . . ω1,m

...
...

...
...

...

ωm,1 . . . ωm,j−1 ωmi ωm,j+1 . . . ωm,m


 . (5.11)

This is obtained by the substitution of the j th column by the ith line. Hence if m < i and
m < j , we have

(ωm+1)i,j = 1

det Bm

det




ω11 . . . ω1,m ωi,j

...
...

...

ωm1 . . . ωm,m ωm,j

ωi1 . . . ωi,m ωi,j


 . (5.12)

The right-hand side is an (m + 1) × (m + 1) matrix obtained from Bm having a piece of the ith
line and j th column with m < i and m < j . Finally


θm

1
...

θm
m


 = B−1

m




θ1

...

θm


 (5.13)

and for all i > m

θm
i = θi +

m∑
j=1

(ωm+1)ij θj . (5.14)

These results may be proven by recursion. The proof is uniquely based on the expansion of
the determinant into minors. For example for (ωm+1)11, one has to compute

(ωm)11 − (ωm)2
1m

(ωm)mm

(5.15)

with

(ωm)11 = (B̃m)11

det Bm

(5.16)

where B̃m is the matrix formed by cofactors of Bm

(ωm)mm = det Bm+1

det Bm

(5.17)

with det Bm+1 = ωm+1,m+1 det Bm +
∑m

i=1

∑m
j=1 ωi,m+1ωm+1,j (B̃m)i,j

(ωm)im =
m∑

i=1

ωi,m+1
(B̃m)i,1

det Bm

. (5.18)

Hence

(ωm)11 − (ωm)2
1m

(ωm)mm

= ωm+1,m+1(B̃m)11

det Bm+1

+
1

det Bm+1 det Bm

m∑
i=1

m∑
j=1

ωi,m+1ωm+1,j ((B̃m)11(B̃m)ij − (B̃m)1j (B̃m)i1).

(5.19)
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Knowing that the determinant is invariant (up to a sign) under permutations of lines or columns,
it is sufficient to compute

(B̃m)11(B̃m)mm − (B̃m)1m(B̃m)m1 =

 ∑

σ∈Sm−1

(−1)ε(σ )

m−1∏
i=1

ωi+1,σ (i)+1




×

 ∑

σ ′∈Sm−1

(−1)ε(σ
′)

m−1∏
i=1

ωi,σ ′(i)


−


 ∑

σ∈Sm−1

(−1)ε(σ
′)

m−1∏
i=1

ωi,σ(i)+1




×

 ∑

σ ′∈Sm−1

(−1)ε(σ )

m−1∏
i=1

ωi+1,σ ′(i)


 . (5.20)

Where Sm−1 is the symmetric group of permutations of order (m − 1). After expansion and
regrouping, we get the double sum

∑
σ∈Sm−1

∑
σ ′∈Sm−1

(−1)ε(σ )+ε(σ ′)
m−1∏
i=1

m−1∏
j=1

(ωi+1,σ (i)+1ωj,σ(j) − ωi,σ(i)+1ωj+1,σ (j)). (5.21)

Now the product of permutations σ ⊗ σ ′ ∈ Sm−1 × Sm−1 may be represented as σ ⊗ σ ′ ∈
Sm × Sm−2 and the previous double sum is recast under the form

∑
σ∈Sm

∑
σ ′∈Sm−2

(−1)ε(σ )+ε(σ ′)
m∏

i=1

m−2∏
j=1

(ωi,σ (i)ωj+1,σ (j)+1)

=
(∑

σ∈Sm

(−1)ε(σ )

mωi,σ (i)∏
i=1

) ∑
σ∈Sm−2

(−1)ε(σ )

m−2∏
i=1

ωi+1,σ (i)+1




= det Bm det




ω12 . . . ω1,m−1

...
...

ωm−1,2 . . . ωm−1,m−1


 . (5.22)

For opposite permutations of lines and columns we have the following relation:

(B̃m)ij (B̃m)kk′ − (B̃m)ik(B̃m)jk′

= det Bm det




ω11 . . . ω̂1,j . . . ω̂1,k′ . . . ω1,m

...
...

...
...

ω̂i1 . . . ω̂i,j . . . ω̂i,k′ . . . ω̂i,m

...
...

...
...

ω̂k1 . . . ω̂k,j . . . ω̂k,k′ . . . ω̂k,m

...
...

...
...

ωm1 . . . ω̂m,j . . . ω̂m,k′ . . . ωm,m




. (5.23)



Multidimensional Gaussian sums arising from the distribution of Birkhoff sums 11785

The last matrix is of size (m − 2) × (m − 2) obtained from Bm by the removal of
columns j and k′ and of the lines i and k. Consequently

(ωm)11 − (ωm)2
1m

(ωm)mm

= (B̃m)11ωm+1,m+1

det Bm+1

+




m∑
i=1

m∑
j=1

ωi,m+1ωj,m+1

det Bm+1
det




ω11 . . . ω̂1,j . . . ω̂1,k′ . . . ω1,m

...
...

...
...

ω̂i1 . . . ω̂i,j . . . ω̂i,k′ . . . ω̂i,m

...
...

...
...

ω̂k1 . . . ω̂k,j . . . ω̂k,k′ . . . ω̂k,m

...
...

...
...

ωm1 . . . ω̂m,j . . . ω̂m,k′ . . . ωm,m







.

(5.24)

But this expression corresponds to the expansion of the determinant of

(ωm)11 = (B̃m+1)11

det Bm+1
= det




ω22 . . . ω2,m+1

...
...

ωm+1,2 . . . ωm+1,m+1


 (5.25)

with respect to line (m + 1) and column (m + 1). Other results may be proved along the same
line, i.e. using the expansion of the determinant into minors. Hence if � is invertible, one can
perform the duality transformation with respect to all indices kj , and the constants have the
expressions

�d =
√

i
d

√
det �

e−it �θ�−1 �θ �d = −�−1 �θd = �−1 �θ. (5.26)

Each sum
∑

ki
is replaced by

∑
ki

+Oi (1), as seen before. Proceeding as for d = 2, one can
extend the two-dimensional result to the set of invertible matrices with non-integer diagonal
elements. Due to linearity, this formula remains valid for sums on a bounded domain D ∈ Zd .
The hypothesis of a bounded domain is necessary since otherwise the Gaussian sums are not
converging. This is not the case for theta functions. Consequently, the result is also valid for
matrices � ∈ Md(]0, 1[)inv.

There remains the extension to R\Z to be examined. For this, let us introduce
Lij ∈ Md({0, 1}) such that (Lij )k,k′ = 0 for all k, k′ except for (k = i, k′ = j) or
(k = j, k′ = i). Compute now

dσ
[�a,�b]
D (� + Lij , �θ) =

∑
�k∈D

exp

(
iπ

(
t

(
�n − �a

2

)
(� + Lij )

(
�n − �a

2

)
+ 2t

(
�n − �a

2

)(
�θ −

�b
2

)))

=
∑
�k∈D

exp

(
iπ

(
t

(
�n − �a

2

)
�

(
�n − �a

2

)
+ 2t

(
�n − �a

2

)(
�θ −

�b
2

)

+ t

(
�n − �a

2

)
Lij

(
�n − �a

2

)))
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= iaiaj

∑
�k∈D

exp

(
iπ

(
t

(
�n − �a

2

)
�

(
�n − �a

2

)

+ 2t

(
�n − �a

2

)(
�θ −

�b
2

)
− (ainj + ajni)

))
(5.27)

since

t

(
�n − �a

2

)
Lij

(
�n − �a

2

)
= 2
(
ni − ai

2

) (
nj − aj

2

)
= 2ninj − (ainj + ajni) +

aiaj

2
.

(5.28)

We set �b′ ≡ �b + ai �ej + aj �ei mod (1, 1) and obtain

dσ
[�a,�b]
D (� + Lij , �θ) = (−i)aiaj

∑
�k∈D

exp

(
iπ

(
t

(
�n − �a

2

)
�

(
�n − �a

2

)

+ 2t

(
�n − �a

2

)(
�θ −

�b′

2

)))

= (−i)aiaj dσ
[�a,�b′]
D (�, �θ). (5.29)

Now let Li ∈ Md({0, 1})sym and (Li)k,k′ = 0 except for k = i, k′ = 1. Then

dσ
[�a,�b]
D (� + Li, �θ) = (−1)(1−ai )ni (

√
i)ai

∑
�k∈D

exp

(
iπ

(t(
�n − �a

2

)
(�)

(
�n − �a

2

)

+ 2t

(
�n − �a

2

)(
�θ −

�b
2

)))
(5.30)

but with �b′ = �b + (1 − ai) �ej , we have the result

dσ
[�a,�b]
D (� + Li, �θ) = (

√
i)ai dσ

[�a,�b′]
D (�, �θ), (5.31)

and may state the theorem:

Theorem 5.1. With the convention
√−1 = i and ∀� ∈ M∗

d ([0, 1[)inv and ∀�θ ∈]0, 1[d , the
Gaussian sum in d dimensions admits the duality formula:

•
dσ

[�a,�b]
D (�, �θ) = (

√
i)d

det �
e−iπt �θ�−1 �θ ∑

0�i1,...,id�d

O(1)i1+···+id dσ
[�a,�b]

P i1
1 ...P id

d �D
(−�−1,�−1 �θ).

(5.32)

We also use the convention P0 = Id, the identity map.
• For Lij ∈ Md({0, 1})sym introduced before and �b′ ≡ �b + ai �ej + aj �ei mod (1, 1) we also

have
dσ

[�a,�b]
D (� + Lij , �θ) = (−i)aiaj dσ

[�a,�b′]
D (�, �θ). (5.33)

• And for Li ∈ Md({0, 1})sym introduced before and �b′ = �b + (1 − ai) �ej , we obtain

dσ
[�a,�b]
D (� + Li, �θ) = (

√
i)ai dσ

[�a,�b′]
D (�, �θ). (5.34)

The functions dC
[�a,�b]
D (�, �θ) and dS

[�a,�b]
D (�, �θ) verify similar duality relations.
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If � is not invertible, one may perform a partial duality transformation. Up to a
permutation of indices, the duality transformation may be applied to those of the indices
for which the minors are nonzero and the number of indices corresponds simply to the rank
of the matrix �. For the remaining indices the summation can be performed, since they are
geometrical sums.

6. Applications to the computation of ξn[β, x; Pi]

Now we go back to equation (3.7) which we shall write using the notation of the previous
section. The matrix � belongs to M∗

2q−1(R)sym and has the form

� = β∑
Pi




P2
(∑

Pi − P2
) −P2P3 . . . −P2P2q

−P2P3 P3
(∑

Pi − P3
) ... −P3P2q

...
...

. . .
...

−P2P2q −P3P2q . . . P2q

(∑
Pi − P2q

)


 (6.1)

we note
∑

for
∑2q

i=2 and

�θ = x




P2

P3

...

P2q


 ∈ Vect2q−1(R). (6.2)

It is easy to see that det � = 0 (rank(�) � 2(q − 1)). By just adding all the lines, we get a
line of 0. Let us compute the minor

det
β∑
Pi




P2
(∑

Pi − P2
) −P2P3 . . . −P2P2q−1

−P2P3 P3
(∑

Pi − P3
) ... −P3P2q−1

...
...

. . .
...

−P2P2q−1 −P3P2q−1 . . . P2q−1
(∑

Pi − P2q−1
)




= β2(q−1) P2 · · · P2q−1(∑
Pi

)2(q−1)
det




∑
Pi − P2 −P2 . . . −P2

−P3
∑

Pi − P3
... −P3

...
...

. . .
...

−P2q−1 −P2q−1 . . .
∑

Pi − P2q−1


 .

(6.3)

Now replacing the first line by the sum of all the lines, we obtain

= β2(q−1)P2 · · · P2q(∑
Pi

)2(q−1)
det




1 1 . . . 1

−P3
∑

Pi − P3
... −P3

...
...

. . .
...

−P2q−1 −P2q−1 . . .
∑

Pi − P2q−1


 . (6.4)
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Replacing the j th column by the difference of the j th and the first column. Doing it for all
j � 2, we get to the expression

= β2(q−1) P2 · · · P2q(∑
Pi

)2(q−1)
det




1 0 0 · · · 0

−P3
∑

Pi 0
... 0

−P4 0
∑

Pi

... 0
...

...
...

. . .
...

−P2q−1 0 0 . . .
∑

Pi




= β2(q−1) P2 · · · P2q(∑
Pi

) �= 0. (6.5)

Consequently we have the lemma

Lemma 10.

rank(�) = 2(q − 1). (6.6)

This result implies the duality transformation of ξn only with respect to indices
k2, . . . , k2q−1. Thus we have

�2(q−1) =
(

i

β

)(q−1)
√ ∑

Pi

P2 · · ·P2q

exp
(−iπt(θ2, . . . , θ2q−1)�

−1
2(q−1)(θ2, . . . , θ2q−1)

)
(6.7)

with

�|i,j=2,...,2q−1
def= �̄ = 1∑

Pi




P2
(∑

Pi − P2
)

. . . −P2P2q−1

...
. . .

...

−P2P2q−1 . . . P2q−1
(∑

Pi − P2q−1
)

 . (6.8)

Using the results of the above section we also obtain ∀i = 2, . . . , 2q − 1

ω2q−1|i,2q = 1(∑
Pi

)2q−3
P2 · · ·P2q

× det




P2
(∑

Pi − P2
)

. . . −P2P2q . . . −P2P2q−1

−P2P3 . . . −P3P2q . . . −P2P2q−1

...
. . .

...
...

−P2Pi . . . −P2qPi . . . −PiP2q−1

...
...

. . .
...

−P2P2q−1 . . . −P2q−1P2q . . . −P2q−1
(∑

Pi − P2q−1
)




.

(6.9)

In the last matrix we substitute the ith column by the sum of all the columns of the matrix
such that the ith column becomes

[−PiP2, . . . , Pi(P1 + · · · + P̂i + · · · P2q), . . . ,−PiP2q−1]. (6.10)

So that ω2q−1|i,2q = 1. We also have


θ
2q−1
2
...

θ
2q−1
2q−1


 = �̄−1




θ2

...

θ2q−1


 θ

2q

2q−1 = θ2q + · · · + θ2 (6.11)
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At the end we get the form of �2q−2 as

�2q−2 =


 (�̄−1)

1
...

1
1 . . . 1 0


 (6.12)

where �̄ is the (2q − 2) × (2q − 2) matrix defined above. So considering all the results
modulo 1, the matrix �2q−2 does not admit coupling between k2q and ki for i = 2, . . . , 2q −1.
Consequently with

A�n = An − 1, . . . , n − 1︸ ︷︷ ︸
2q−2 times

and θi = xPi,∀i = 2, . . . , 2q − 1

D2q−1 ◦ · · · ◦ D2(ξn(β, x;P2, . . . , P2q)) =
(

i

β

)q−1
√ ∑2q

i=1 Pi

P2 · · ·P2q

× e−iπt (θ2,...,θ2q−1)�̄
−1(θ2,...,θ2q−1)

n−1∑
k1=0

n−1∑
k2q=0

e2πx(k2q−k1)
∑

Pi

×
∑

2�i2,...,i2q−1�2q−1

O(1)i2+···+i2q−1 .2q−2σ
[�0,�0]
Pi2 ◦···◦Pi2q−1[�̄A�n ]

(
− �̄−1

β
,
�̄−1

β
�̄θ
)

(6.13)

where �̄θ stands for the vector

�̄θ =




θ2

...

θ2q−1


 . (6.14)

Hence

ξn(β, x;P2, . . . , P2q) = O(1)

√ ∑2q

i=1 Pi

P2 · · · P2q

n−1∑
k1

n−1∑
k2q

e2πx(k2q−k1)
∑

Pi

×
∑

2�i2,...,i2q−1�2q−1

σ
[�0,�0]
Pi2 ◦···◦Pi2q−1[�̄A�n ]

(−�̄−1, �̄−1 �̄θ). (6.15)

Here we are reduced to computing the σ -functions, with � a matrix with integer entries of the
form

σ
[�0,�0]
A�n (λ�, �θ) =

∑
�k∈A�n

eiπ(λt �k��k+t �k �θ) (6.16)

where λ ∈ R.

Lemma 11. For any matrix � with integer entries, there exists a basis (�k′) such that the
quadratic form t �k��k becomes

t �k��k = λ1k
′
1

2 + · · · + λ2q−2k
′
2q−2

2 = t �k′��k′ (6.17)

where � is a diagonal matrix with rational entries. If we note �k′ = U �k,U has also integer
entries.
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Proof. Let us write down explicitly the expression of the quadratic form∑
ij

ωi,j kikj =
∑

1�i�d

ωiik
2
i + 2

∑
1�i<j�d

ωij kikj

= ωmm


km +

d∑
i=1,i �=m

ωmi

ωmm

ki


2

− ωmm


 d∑

i=1,i �=m

ωmi

ωmm

ki


2

+ 2
∑

1�i<j�d,(i,j) �=m

ωij kikj

= ωmk′2
m +

∑
i=1,i �=m

ω′
iik

′2
i + 2

∑
1�i<j�d,(i,j) �=m

ω′
ij k

′
ik

′
j . (6.18)

So by redefining the ω′
ij and proceeding by induction we obtained the expected result. �

The transition matrix U used for the change of basis can be taken with integer entries
instead of rational entries. Thus ∀i = 1, . . . , d, k′

i =∑d
j=1 Bij kj and U is of course invertible.

Moreover, up to a permutation of indices one can ensure that the next minor is non-zero. We
then set

U ′ =




U11 . . . U1,d−1

...
...

Ud−1,1 . . . Ud−1,d−1


 (6.19)

and det(U ′) �= 0. Let D be a bounded domain of Nd and let �P ∈ U(D). Then �P , by
construction, is a vector with integer components and ∃�k ∈ D such that �P = U �k. At this
stage, one should show that U(D) can be decomposed into integer sub-lattices Ri of the lattice
spacing δi ∈ N. Thus �P ∈ Ri , then �P + δi�ej ∈ Ri with �ej , j = 1, . . . , d, being a unit vector.
Ri is defined inside the boundary of U(D). To prove this last property one must solve in Nd ,
the system ∀i = 1, . . . , d − 1

d∑
j=1

Bij kj = 0
d∑

j=1

Bdjkj = δ. (6.20)

We have thus

U ′ =




k1

...

kd−1


 = −kd




U1,d

...

U1,d−1


 (6.21)

and as det U ′ �= 0 then


k1

...

kd−1


 = − kd

det U ′ Ũ
′




U1,d

...

U1,d−1


 (6.22)

where Ũ ′ is a matrix of the cofactor of U ′ (with integer entries). Let us take kd = −det U ′ so
we have determined in Nd the solution the above equations


k1

...

kd−1


 = Ũ ′




U1,d

...

U1,d−1


 . (6.23)
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It is clear that any multiple of this vector is a solution. Let us compute now δ, defined by

δ =
d∑

j=1

Udjkj = Udd det U ′ +
d−1∑
i=1

d−1∑
j=1

Udj Ũ
′
ijUid . (6.24)

Thus δ = det U by expanding with respect to the last line and column, we obtain

Proposition 12. Let U(D) be a bounded domain of Nd and U an integer invertible matrix.
Then there exists at most δd hypercubes Ri ∈ Nd of the lattice spacing δi (δi being a divisor
of δ, with δ = det U ), such that ∀P ∈ U(D), ∃1 � i � δd for which P ∈ Ri . The hypercubes
(Ri)i=1,...,δd are all limited by boundaries of U(D).

Proposition 13. Let (Fn)n∈N be a family of hypercubes of Nd , defined by �k = (k1, . . . , kd) ∈ Fn

with ∀1 � i � d, ki ∈ N and 1 � ki � n. Let (Dn)n∈N be an increasing sequence of connected
domains of Nd such that there exists t ∈ R for which ∀n ∈ N: Fn ⊂ Dn ⊂ Ftn. Then,
uniformly with respect to θ

dσ
[�a,�b]
Dn

(�, �θ) ∼
n→∞

dσ
[�0,�0]
Fn

(�, �θ). (6.25)

Proof. Nd as a partially ordered set, we can easily prove that ∀(�a, �b) ∈ Vectd({0, 1}),
∀� ∈ Md(R) and ∀�θ ∈ Vectd(R) the mapping dσ

[�a,�b]
(.) (�, �θ) defined as follows is increasing:

dσ
[�a,�b]
(·) (�, �θ) : P(Nd) −→ C

F �−→ dσ
[�a,�b]
F (�, �θ).

(6.26)

So for n sufficiently large we have dσ
[�a,�b]
Fn

(�, �θ) � dσ
[�a,�b]
Dn

(�, �θ) � dσ
[�a,�b]
Ftn

(�, �θ). Now taking

into account that dσ
[�a,�b]
Ftn

(�, �θ) = O
(
dσ

[�a,�b]
Fn

(�, �θ)
)
, we can conclude that dσ

[�a,�b]
Dn

(�, �θ) =
O
(
dσ

[�a,�b]
Fn

(�, �θ)
)

and is homogeneous in �θ . �

Remark 14. Here we just recall the result of [DM] that ∀χ ∈ [1/2, 1] ∃x ∈ R such that
1σ [0,0]

n (x, 0) = O(nχ).

According to [HL, p 202], the hypothesis of uniformity is automatically verified in Gaussian
sums with d = 1. This hypothesis remains valid for d-dimensional Gaussian sums. Let
R1(�n), . . . , Rd(�n) be the sub-lattices making up B(�̃A�n). Then we have∑
0�i2,...,i2q−2�2q−1

O(1)i2+···+i2q−1 · 2q−2σ
[�0,�0]
Pi2 ◦···◦Pi2q−1 (�̃A�n)

(
− �̄−1

β
,
�̄−1

β
�̄θ
)

=
s∑

j=1

∑
i2∈[1,2q−1],...,
i2q−2∈[1,2q−1]

O(1)i2+···+i2q−1 .2q−2σ
[�0,�0]
Pi2 ◦···◦Pi2q−1 (Rj )

(
−�

β

−1

,−�

β

−1 �̄θ ′)

(6.27)

with �̄θ ′ = B−1 �̄θ , where B is the matrix of the basis change described in lemma 11 such that �

is a diagonal matrix with integer (or rational) entries. Since � has integer matrix elements, it
follows from the above formula that there exists a finite number of sub-lattices for which the
multi-variable sum is reduced to a product of (2q − 2) factors of one-dimensional Gaussian

sums where each factor is of the form 1σ
[�0,�0]
(Rj )

(− 1
λβ

,− 1
λβ

θ
)

where λ is an eigenvalue of �.
The following section will consider the problem of the asymptotic behaviour of such Gaussian
sums.
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6.1. Estimations of Gaussian sums using the duality formula

We shall now present the theorem which motivates the previous construction. Let us recall
the method of Hardy and Littelwood using the duality formula for the computation of the
Gaussian sums. They give the expression, ∀x ∈ ]0, 1[,∀θ ∈ ]0, 1[ and ∀(a, b) ∈ {0, 1}, and
any n ∈ N:

1σ [a,b]
n (x, θ) = O(1)

√
nxx1 · · · xν +

O(1)√
xx1 · · · xν

. (6.28)

Recall briefly the steps: for convenience let us denote x0 = x. ∀i = 0, . . . , ν, we have
0 < xi < 1. xi are the rest of the development in continuous fractions of x:

x = 1

a1 +
1

a2 + · · ·

not.= [a1, a2, . . . , ] (6.29)

and ∀i > 0 the (xi)i∈N are given inductively by the relation

xi−1 = 1

ai + xi

. (6.30)

Hence, for any n, there is an integer ν determined in such a way that

nx0 · · · xν � 1 � nx0 · · · xν−1. (6.31)

Through this condition, the first term on the rhs in equation (6.28) becomes irrelevant with
respect to the second one. Let us put ν = ν(n) in the above expression. So there exists a
positive constant H such that

x0 . . . xν � Ha−1
ν(n)x0 . . . xν−1. (6.32)

Hence we obtain by using equations (6.31) and (6.32):

1√
x0 . . . xν

= O(
√

aν(n)n). (6.33)

If we use the trivial estimation
(
xixi+1 < 1

2

)
we deduce that necessarily ∀ε > 0:

ν(n) <
2 + ε

ln 2
ln n. (6.34)

Thus

• if an = O(1) then 1σ [a,b]
n (x, θ) = O(

√
n)

• if an = O(nρ) then 1σ [a,b]
n (x, θ) = O

(√
n(ln n)

ρ

2
)

• if an = O(enρ), with 0 < ρ < ln 2
2 then 1σ [a,b]

n (x, θ) = O
(√

nn
ρ

ln 2 +ε
)
.

Nevertheless let us recall that the equidistribution of eiπxk2
, for any irrational x, [K] and [KN]

give the upper bound of
1σ [a,b]

n (x, θ) = o(n). (6.35)

Now we must use other results of the number theory concerning the computation of continuous
fraction expansion of a fraction of the numbers occurring as arguments in our Gaussian sums,
1σ

[�0,�0]
(Rj )

(− 1
λβ

,− 1
λβ

θ
)
, of the form

1σ [a,b]
n

(ux + v

tx + w
, θ
)

� K
(1σ [0,0]

n (x, 0)
)

(6.36)

where (u, v, t, w) ∈ N4.
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We will refer to the article of Raney [R] and to the survey of Van der Poorten [VdP]. Let us
introduce some notation

�k : ]0, 1[ −→ N∗N

x �−→ [a1, a2, . . . , ak]
(6.37)

such that

�k(x) = 1

a1 +
1

a2 +
1

. . . +
1

ak

. (6.38)

Denote by �∞ the map which associates with any real number its continuous fraction. �∞ is a
homeomorphism from ]0, 1[ to N∗N. Referring to the theorem of convergence for continuous
fraction, for any x ∈]0, 1[ we have

�−1
∞ ◦ �k(x) →

k→∞
x. (6.39)

Consider now the matrix representation {R,L} of the expansion in continuous fractions of x

R =
[

1 1
0 1

]
L =

[
1 0
1 1

]
. (6.40)

Here ∀k ∈ N∗ one gets

Rk =
[

1 k

0 1

]
Lk =

[
1 0
k 1

]
(6.41)

So �−1
k ([a1, . . . , ak]) ∈ Q is determined by the formula

�−1
k ([a1, . . . , ak]) =

∑2
i=1(R

a1La2 . . . Rak )1,i∑2
i=1(R

a1La2 . . . Rak )2,i

. (6.42)

Now we use the main result of the articles quoted above.
The continuous fraction of ax+b

cx+d
is related to that of x if ad − ac �= 0. To this end, let us

consider the set of 2 × 2 matrices of positive integer entries:

En =
{
M =

(
a b

c d

)
∈ M2(N)| n = det M �= 0, a > c, b < d

}
. (6.43)

The number of such matrices is finite [R]. Denote by En = {A1, . . . , AN }. The commutation
relations obey some restrictions: ∀i = 1, . . . , N, ∃i ′, i ′′ = 1, . . . , N such that

AiR
k1
RLk1

L = Lk′1
L Rk′1

R Ai ′ AiL
k2
LRk2

R = Rk′2
R Lk′2

L Ai ′′ (6.44)

with
(
k1
R, k1

L

)
positive exponents such that 1 � k1

R + k1
L � n and so on. The algorithm which

allows us to compute, for a given n, the matrices on the left-hand side is given below. We note
that these commutation relations are invariant under the transposition

AiR
k1
RLk1

L = Lk1′
L Rk1′

R Ai ′
tAi ′R

k1′
R Lk1′

L = Lk1
LRk1

R tAi. (6.45)

Note that for any n ∈ N∗(
n 0
0 1

)
R = Rn

(
n 0
0 1

) (
n 0
0 1

)
L = Ln

(
n 0
0 1

)
. (6.46)

This provides an algorithm to compute the expansion into continued fraction of the values of
the function x �→ ax+b

cx+d
.
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6.2. Illustration of the algorithm

We now shall illustrate this method for n = 2. The set E2 is made up of two matrices which
represent the multiplication and the division by 2:

E2 = {A,A′} (6.47)

A =
[

2 0
0 1

]
A′ =

[
1 0
0 2

]
. (6.48)

The rules of commutation are compiled in the following tabulation:

A A′

A R : R2 LR : RL

L2 : L

A′ RL : LR R2 : R

L : L2

(6.49)

The table is to be read following the example of the first entry: AR = R2A. These
relations are equivalent to the following distinct cases:

x = [0, 2a, b, . . .] ⇒ 2x = [0, a, 2b, . . .]

x = [0, 2a + 1, b, . . .] ⇒ 2x = [0, a, 1, 1, (b − 1)/2, . . .].
(6.50)

The entire determination of 2x from x is done by induction with respect to those rules. For
example, if x = [7, 2, 5, . . .] then

2x = [3, 1, 1, 0, 1, 1, 2, . . .] = [3, 1, 2, 1, 2, . . .]. (6.51)

Let us introduce some notation: [x0, x1, . . .] with 0 < xi < 1,∀i ∈ N, the sequence of the
rest deduced by the decomposition into continuous fractions of x = x0. We shall denote the
resulting sequence of the rest of 2x by 2x = x ′

0 = [x ′
0, x

′
1, . . .]. Thus we have, by definition,

the relation

xi = −bi+1 +
1

xi+1
(6.52)

where x = [0; b1, b2, . . .]. As formula (equation (6.50)) shows, the processes of commutation
(resulting of the multiplication by 2 generates a lag length between the two sequences
(x = [0; b1, b2, . . .] and 2x = [0; b′

1, b
′
2, . . .]). We shall define a function (depending on

the decomposition of x) which measures the length of 2x with respect to x:

k′
x : N −→ N

k �−→ k′
x(k)

(6.53)

such that

• if 2 divides b1 (in what follows denoted as: 2 | b1), then k′
x(k1) = k1 and k′

x(k2) = k2

• if 2 does not divide b1 (in what follows denoted as 2 � b1) then k′
x(k1) = k1 + 3 and

(a) if 2 � b2 then k′
x(k2) = k′

x(k1) + 1
(b) if 2 | b2 then k′

x(k2) = k′
x(k1) + 3

and so on. We recall the trivial reduction which occurs when one of the components of
the decomposition is zero, we shall refer to the example (equation (6.51)). Note for this x,
k′
x(3) = 5.

Lemma 15. ∀p ∈ N, let [x0, x1, . . .], [x ′
0, x

′
1, . . .] be the rests of the expansion of x and

x ′ = px respectively, then ∀k ∈ N∃C ∈ N which divides k (possibly C = 1) such that

x ′
1 . . . x ′

k′
x (k) = Cx1 . . . xk (6.54)

where [x0, x1, . . .], [x ′
0, x

′
1, . . .] are respectively the rest sequence of x and px.
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Proof. We shall reduce the proof to the simplest case of p = 2. The other case is quite the
same but it turns out to be more difficult because of an involved algebra. We prove the lemma
distinguishing all the possibilities:

• if 2 | b1 then b′
1 = b1

2 . Compute now x ′
0x

′
1 = x ′

0

(−b′
1 + 1

x ′
0

) = 1 − b1x0 = x0x1.

Consequently x ′
1 = x1

2 . Since 2 | b1 then b′
2 = 2b2 and x ′

1x
′
2 = 1 − b′

2x
′
1 = 1 − b2x1 =

x1x2 and x ′
2 = 2x1.

At this level we have two possibilities either 2 | b3 and the procedure repeats itself
identically or 2 � b3, in this case we shall refer to the following:

• if 2 � b1 then b′
1

b1−1
2 and b′

2 = b′
3 = 1. Hence let us calculate x ′

0x
′
1x

′
2x

′
3: x ′

0x
′
1x

′
2x

′
3 =

−(2b′
1 + 1)x ′

0 + 2 = −2b1x0 + 2 = 2(1 − b1x0) = 2x1x0 so x1 = x ′
1x

′
2x

′
3. We establish

another relation x ′
0x

′
1x

′
2 = (1 +b′

1)x
′
0 + 1 then x ′

1x
′
2 = 1 +b′

1 − 1
x ′

0
= 1−x1

2 ie x1 + 2x ′
1x

′
2 = 1

and we deduce that (1 − x1)x
′
3 = 2x1

• if 2 � b2 then b′
4 = b2−1

2 and b′
5 = 2b3. Calculating x ′

3x
′
4x

′
5 = x ′

3(1 + b′
5b

′
4) − b′

5, so
x ′

4x
′
5 = 1 + b2b3 − b3

x1
= x2x3. We also prove that −b′

5x
′
4 + 1 = x2x3 = −b3x2 + 1 so

x ′
4 = x2

2 and x ′
5 = 2x3

• if 2 | b2 then b′
4 = b2−2

2 end b′
5 = b′

6 = 1. x ′
3x

′
4x

′
5x

′
6 = 2 − (b2 − 1)x ′

3. So using
2x1 = x ′

3(1 − x1) we get x ′
4x

′
5x

′
6 = x2. we also get 2x ′

4x
′
5 + x2 = 1. So let us summarize

these results in the following tables:

x = 2b1 b2 2b3

x0 x1 x2 x3

2x = b1 2b2 b3

x ′
0 = 2x0 x ′

1 = x1
2 x ′

2 = 2x2 x ′
3 = x3

2
x = 2b1 b2 2b3 + 1
x0 x1 x2 x3

2x = b1 2b2 b3 1 1

x ′
0 = 2x0 x ′

1 = x1
2 x ′

2 = 2x2

x ′
3

x3 = x ′
3x

′
4x

′
5

x ′
3x

′
4 + 2x3 = 1

x ′
4 x ′

5

(6.55)

and we also have

x = 2b1 + 1 2b2 + 1 b3

x0 x1 x2 x3

2x = b1 1 1 b2 2b3

x ′
0 = 2x0

x ′
1

x1 = x ′
1x

′
2x

′
3

x ′
1x

′
2 + 2x1 = 1

x ′
2 x ′

3
x2
2 2x3

x = 2b1 + 1 2b2 + 2
x0 x1 x2

2x = b1 1 1 b2 1 1

x ′
0 = 2x0

x ′
1

x1 = x ′
1x

′
2x

′
3

x ′
1x

′
2 + 2x1 = 1

x ′
2 x ′

3

x ′
4

x2 = x ′
4x

′
5x

′
6

x ′
4x

′
5 + 2x2 = 1

x ′
5 x ′

6

(6.56)

Thus we have: ∀k ∈ Nx1 . . . xk = x ′
1 . . . x ′

k′(k) or 2x1 . . . xk = x ′
1 . . . x ′

k′(k). This complete the
proof of the lemma. �
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More generically, let A ∈ En goes through the string Ra1La2Ra3 . . . , commuting with
respect to the two matrices {R,L}: [ARa1La2Ra3 . . . Rak ] �→ [Ra′

1La′
2Ra′

3 . . . Ra′
k′ A′] with

A′ ∈ En. This procedure gives an algorithm for the computation of

�k′(k)

(
ax + b

cx + d

)
= [a′

1, a
′
2, a

′
3, . . . , a

′
k′(k)] (6.57)

which only depends on [a1, a2, . . . , ak]. Now using the above lemma in the formula
(equation (6.28)), we obtain the theorem:

Theorem 6.1. ∀(u, v, t, w) ∈ N4,∀x ∈ R\Q,∀θ ∈ [0, 1[ and ∀(a, b) ∈ {0, 1}, then

1σ [a,b]
n

(ux + v

tx + w
, θ
)

= O
(

1σ [0,0]
n (x, 0)

)
. (6.58)

By applying this theorem to the above expression one can deduce that

ξn(x, β;P2, . . . , P2q) =
√ ∑

Pi

P2 · · · P2q

n−1∑
k1=0

n−1∑
k2q=0

e2iπx(k2q−k1)(
∑

Pi)O
(1σ [a,b]

n (β, 0)
)2q−2

. (6.59)

Remark 16. The estimation depends on (u, v, t, w). There remains an essential question:
does there exist a constant K independent of (u, v, t, w) ∈ N4 such that

1σ [a,b]
n

(ux + v

tx + w
, θ
)

� K
(

1σ [0,0]
n (x, 0)

)
? (6.60)

This result is not trivial to prove. In fact, if this assertion were true, the characteristic function
would be analytical in a neighbourhood of zero. Consequently, this work only gives a partial
answer.

Remark 17. We observe that this result is an optimal estimation [HL, p 225, theorem 2.221]
when applied to the matrix case: for any � is an integer invertible matrix, and for any β ∈ R\Q,
we have

dσ
[�a,�b]
A�n (β�, �θ) = O

(
1σ [0,0]

n (β, 0)
)d

. (6.61)

It cannot be replaced by a better estimate.

Now we can compute the mean value of S
2q
n

(
πβ

4

)
(see equation (3.5)):

E

[
S2q

n

(
πβ

4

)]
= (−1)q

(
4

π

)q ∑
Pi∈Z̃

1∏
Pi

(∑
Pi

) ∫ 1

0
ξn(x, β;P2, . . . , P2q) dx

= (−1)q
(

4

π

)q ∑
Pi∈Z̃

O
(

1σ [0,0]
n (β, 0)

)2(q−1)

(∏
Pi

) 3
2
√∑

Pi

n−1∑
k1=0

n−1∑
k2q=0

∫ 1

0
e2iπx(k2q−k1)

∑
Pi dx

(6.62)

where
∏

stands for
∏2q

i=2. Performing the integral in x yields the condition k1 = k2q , we end
up with

E

[
S2q

n

(
πβ

4

)]
= n
∑
Pi∈Z̃

O
(

1σ [0,0]
n (β, 0)

)2(q−1)

(∏
Pi

) 3
2
√∑

Pi

= n · cq · O(1σ [0,0]
n (β, 0)

)2(q−1)
. (6.63)
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O(1σ [0,0]
n (x, 0))2(q−1) depends on n but also on (P2, . . . , P2(q−1)). Moreover cq is finite because

the moments are perfectly defined (the integration is done over a compact set [0, 2π [×[0, 2π [).
So

E

[
S2q

n

(
πβ

4

)]
= n · O (1σ [0,0]

n (β, 0)2(q−1)
)
. (6.64)

Remark 18. For q = 1, we recover the exact result E
[
S

2q
n

(
πβ

4

)] = n, which is independent
of the choice of β.

Theorem 6.2. The unique sequence fn (up to an equivalence as n → ∞) in order that

E

[
Sn

(
πβ

4

)
fn

]2q

= O(1) (6.65)

with respect to n for all q is fn = √
n. This estimate is true for all β such that

1σ [0,0]
n (β, 0) = O(

√
n).

Proof. We must choose a β having a bounded continuous fractions representation to have fn

indenpendent of q. The proof results straightforwardly from the remark 14 that is

f 2
n

nq

(
1σ [0,0]

n

(
πβ

4 , 0
)

fn

)2q

= O(1). (6.66)

�

Remark 19. Note that if β ∈ Q then [HL] 1σ [0,0]
n (β, 0) = O(n) and we recover the result

established earlier, i.e.

E

[
S2q

n

(
πβ

4

)]
= O(n2q−1) (6.67)

which means that there is no normalization of Sn for which the moments neither diverge nor
be nonzero.

Examples of numbers β which admit an expansion as an infinite and bounded continued
fractions are the quadratic irrationals. They ultimately have periodic continued fraction
expansion. This class contains all the square roots of products of pairwise distinct prime
integers, and of course we have, for those numbers, ∀q ∈ N

E

[
S2q

n

(
πβ

4

)]
= O(nq). (6.68)

Hence there exists a normalization
√

n of Sn for which all moments remain bounded with
respect to n and are not zero.

Remark 6.3. Any attempt to obtain information about the convergence in the distribution
of Sn/fn by using numerical computations cannot be correct since behaviours are radically
different according to the nature of the number β and the rational numbers are dense in R.
Finally all of these calculations may be applied in the same way to any periodic function
instead of the signum function χ(y).

As to the problem of the convergence in the distribution of Sn/
√

n, we shall make some
comments in the next section.
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7. Conclusions

In this approach to determine the limiting distribution law of Sn√
n

we have sought to compute

the asymptotic behaviour of the moments of Sn√
n

. If the parameter β = α
4π

admits an expansion
in bounded continued fraction, the behaviour obtained for the expectation values of moments

E
( S2k

n

nk

) = O(1) � Ak may lead to the convergence of the series
∑∞

k=0
(it)2k

2k! Ak , around t = 0.
In that case, the sequence �n(t) converges towards �(t), which is analytic near the origin.
This implies the existence of a limiting distribution with finite moments. The estimation of the
speed of the increase of the Ak seems difficult and is still an open problem. It is thus difficult
to have an idea of the limiting distribution without such an estimation. Although the procedure
does not imply the convergence in distribution for Sn√

n
, it shows that this normalization leading

to a bounded second moment fails to lead to bounded moments of higher orders when β is an
irrational having no expansion in bounded continued fractions.
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